Design of a new immunotoxin from a part of scorpion venom for the treatment of breast cancer

Document Type : Research Paper

Author

Razi Vaccine and Serum Research Institute, Agricultural Research and Training Organization (AREEO), Ahvaz, Iran

Abstract

Breast cancer is one of the best known cancers worldwide. It is associated with many problems due to the structural heterogeneity of the treatment process. Many patients with breast cancer (HER2) are positive. Current cancer treatment methods are not very effective in reducing mortality. However, immunotherapy is less effective in treating cancer and damages the body. Anti-cancer immunotoxins Molecules that contain an immune component that is an antibody or a binding component of an antibody, and the other part is a toxin that is a lethal compound. The anti-HER2 receptor trastuzumab is derived from a single-stranded variable fragment (scFv) that binds to part of a scorpion toxin called neurotoxin Bmk. We investigated the physicochemical properties, secondary structure, and solubility of the chimeric protein using ProtParam and GORIV, PORCalc, PepCalc, and protein-sol, respectively. The structure and solubility of the model were evaluated using PROCHECK, protein-sol, and PepCalc. ALLERTOP server was used to predict sensitivity, and mRNA stability was assessed using RNAfold. Finally, docking of immunotoxin and HER2 was performed using ClusPro server. The results showed that the chimeric protein is a protein with a stable secondary structure in solution and a three-dimensional structure, and also has a stable mRNA and can bind to HER2. The results showed a stable and soluble protein with the desired binding ability to HER2, which made it a suitable immunotoxin candidate for the treatment of breast cancer whose safety needs to be evaluated in clinical phases.

Graphical Abstract

Design of a new immunotoxin from a part of scorpion venom for the treatment of breast cancer

Keywords

Main Subjects


1. Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M, Nahand JS, Rahmati M, Mirzaei H, Kianmehr M. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol 2018; 233(7): 5200-5213.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
2. Lanari C, Wargon V, Rojas P, Molinolo AA. Antiprogestins in breast cancer treatment: are we ready?. Endocr Relat Cancer 2012; 19(3): R35.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
3. Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Breast Cancer Chemosens 2007; 119-29.
4. Loibl S, Gianni L. HER2-positive breast cancer. Lancet 2017; 389(10087): 2415-2129.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
6. Shao J, Kang N, Liu Y, Song S, Wu C, Zhang J. Purification and characterization of an analgesic peptide from Buthus martensii Karsch. Biomed Chromatogr 2007; 21(12): 1266-1271.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B, Debnath A, Gupta SD, Das T, Gomes A. Anticancer potential of animal venoms and toxins. Indian J Exp Biol 2010; 48: 93–103.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
8. Heinen TE, da Veiga AB. Arthropod venoms and cancer. Toxicon 2011; 57(4): 497-511.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
9. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 2010; 146(3): 264-275.
10. Liu Y, Xu J, Choi HH, Han C, Fang Y, Li Y, Van der Jeught K, Xu H, Zhang L, Frieden M, Wang L. Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer. Nat Commun 2018; 9(1): 1-6.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
11. Pal SK, Pegram M. HER2 targeted therapy in breast cancer... beyond Herceptin. Rev Endocr Metab Disord 2007; 8(3): 269-277.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    
12. Niu DG, Peng F, Zhang W, Guan Z, Zhao HD, Li JL, Wang KL, Li TT, Zhang Y, Zheng FM, Xu F. Morphine promotes cancer stem cell properties, contributing to chemoresistance in breast cancer. Oncotarget 2015; 6(6): 3963.
14. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-768.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-284.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. Choudhary S, Mathew M, Verma RS. Therapeutic potential of anticancer immunotoxins. Drug Discov Today. 2011; 16(11-12): 495-503.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
18. Madhumathi J, Verma RS. Therapeutic targets and recent advances in protein immunotoxins. Curr Opin Microbiol 2012; 15(3): 300-309.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
19. Mahboobi M, Sedighian H, Hedayati CH, Bambai B, Soofian SE, Amani J. Applying bioinformatic tools for modeling and modifying type II E. coli L-Asparginase to present a better therapeutic agent/drug for acute lymphoblastic leukemia. Iran J Cancer Prev 2017; 10(3): 10.
20. Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Amani J, Behzadi E, Imani Fooladi AA. In silico evaluation of two targeted chimeric proteins based on bacterial toxins for breast cancer therapy. Int J Cancer Manage 2019; 12(2).
21. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13(10): 714-726.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235(4785): 177-182.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
23. Urbanelli L, Ronchini C, Fontana L, Menard S, Orlandi R, Monaci P. Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 2001; 313(5): 965-976.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
24. Pero SC, Shukla GS, Armstrong AL, Peterson D, Fuller SP, Godin K, Kingsley‐Richards SL, Weaver DL, Bond J, Krag DN. Identification of a small peptide that inhibits the phosphorylation of ErbB2 and proliferation of ErbB2 overexpressing breast cancer cells. Int J Cancer 2004; 111(6): 951-960.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
26. Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J. Immunotoxin: A new tool for cancer therapy. Tumor Biol 2017; 39(2): 1010428317692226.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Gao F, Li H, Chen YD, Yu XN, Wang R, Chen XL. Upregulation of PTEN involved in scorpion venom-induced apoptosis in a lymphoma cell line. Leuk Lymphoma 2009; 50(4): 633-641.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Zhao Y, Cai X, Ye T, Huo J, Liu C, Zhang S, Cao P. Analgesic‐antitumor peptide inhibits proliferation and migration of SHG‐44 human malignant glioma cells. J Cell Biochem 2011; 112(9): 2424-2434.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
30. Feng L, Gao R, Gopalakrishnakone P. Isolation and characterization of a hyaluronidase from the venom of Chinese red scorpion Buthus martensi. Comp Biochem Physiol Part - C Toxicol Pharmacol 2008; 148(3): 250-257.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
31. Taheri-Anganeh M, Khatami SH, Jamali Z, Savardashtaki A, Ghasemi Y, Mostafavi-Pour Z. In silico analysis of suitable signal peptides for secretion of a recombinant alcohol dehydrogenase with a key role in atorvastatin enzymatic synthesis. Mol Biol Res Commun 2019; 8(1): 17.
32. Sokolova E, Guryev E, Yudintsev A, Vodeneev V, Deyev S, Balalaeva I. HER2-specific recombinant immunotoxin 4D5scFv-PE40 passes through retrograde trafficking route and forces cells to enter apoptosis. Oncotarget 2017; 8(13): 22048.
33. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. scFv antibody: principles and clinical application. Clin Exp Immunol 2012; 2012: 1-15.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
34. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 2013; 65(10): 1357-1369.
35. He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, Pons B, Mirey G, Vignard J, Hendrixson DR, Jobin C. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 2019; 68(2): 289-300.
36. Zhang H, Wang Y, Wu Y, Jiang X, Tao Y, Yao Y, Peng Y, Chen X, Fu Y, Yu L, Wang R. Therapeutic potential of an anti-HER2 single chain antibody–DM1 conjugates for the treatment of HER2-positive cancer. Signal Transduct Target Ther 2017; 2(1): 1-1.
37. Raja SM, Desale SS, Mohapatra B, Luan H, Soni K, Zhang J, Storck MA, Feng D, Bielecki TA, Band V, Cohen SM. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition. Oncotarget 2016; 7(9): 10522.
39. Guerra L, Teter K, Lilley BN, Stenerlöw B, Holmes RK, Ploegh HL, Sandvig K, Thelestam M, Frisan T. Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cell Microbiol 2005; 7(7): 921-934.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
40. Takahashi S, Nakagawa T, Banno T, Watanabe T, Murakami K, Nakayama K. Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem 1995; 270(47): 28397-28401.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Weldon JE, Skarzynski M, Therres JA, Ostovitz JR, Zhou H, Kreitman RJ, Pastan I. Designing the furin-cleavable linker in recombinant immunotoxins based on Pseudomonas exotoxin A. Bioconjug Chem 2015; 26(6): 1120-1128.
42. Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem 1980; 88(6): 1895-1898.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
43. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform 2008; 9(1): 1-8.
44. Kelso JM, Greenhawt MJ, Li JT, Nicklas RA, Bernstein DI, Blessing-Moore J, Cox L, Khan D, Lang DM, Oppenheimer J, Portnoy JM. Adverse reactions to vaccines practice parameter 2012 update. J Allergy Clin Immunol 2012; 130(1): 25-43.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed