The role of hyperuricemia in the pathophysiology of preeclampsia

Document Type : Review Paper

Authors

1 Department of Medical Laboratory Technique, The Islamic University, Diwaniya, Iraq

2 Department of Research and Studies, The Islamic University, Najaf, Iraq

3 Department of Midwifery, Kurdistan University of Medical Sciences, Kurdistan, Iran

Abstract

Preeclampsia (PE) is a human pregnancy disorder that begins with high blood pressure. This disorder occurs after 20 weeks of pregnancy and is defined by the high pressure of blood and proteinuria symptoms. Also, PE is recognized as a multifactorial disease that causes damage to some systemic organs including the lungs, brain, kidneys and liver. In some cases, high blood pressure might happen without proteinuria but includes complications including acute renal failure, thrombocytopenia, and fetal growth limitations. Hyperuricemia is known as a serum urate concentration of more than 6.8 mg/dL. Uric acid, which is mainly synthesized in the liver, is released into the bloodstream, only a small percentage of which binds to proteins. Thus, most circulating urate is readily available for filtration in the glomerulus and for participation in a number of complex renal mechanisms. Uric acid amounts in non-pregnant women usually range from 0.3 up to 6.0 mg/dL. Surprisingly, the levels of uric acid in pregnant women up to the twentieth week of pregnancy are 20 to 25 percent lower than in non-pregnant women. This reduction in levels of uric acid in the first trimester is due to hemodilution because of increased blood levels due to elevated filtration rate of glomeruli and decreased proximal tubular reabsorption. Uric acid is an identified biomarker for oxidative stress, kidney damage, and placental ischemia. Specifically, these are also the properties of PE. However, uric acid is sometimes referred to as a biomarker of PE. Elevated levels of serum uric acid in PE vs. usual pregnancies have been shown and recommend levels of serum uric acid as a risk indicator for progression of PE. According to the above discussion, the objective of this study was to review the role of hyperuricemia in the pathophysiology of PE. As a conclusion, PE is specified by hyperuricemia and signs of elevated creation of ROS and reduced antioxidants levels. There are GCKR, PDZK1, LRP2, ABCG2, SLC2A9, SLC17A1, LRRC16, SLC22A12, SLC17A3, SLC22A11, and SF1 genes involved in the uric acid transport that may contribute in the hyperuricemia during PE and Alterations in the function of these genes might increase the risk of this disease.

Graphical Abstract

The role of hyperuricemia in the pathophysiology of preeclampsia

Highlights

  • Preeclampsia is a disorder characterized by high blood pressure and urinary protein.
  • Hyperuricemia is an indicator of preeclamptic pregnancies that could be present from early pregnancy.
  • Hyperuricemia can be involved in the pathogenesis of preeclampsia with vascular damage.

Keywords

Main Subjects


2. Almasian-Tehrani N, Alebouyeh M, Armin S, Soleimani N, Azimi L, Shaker-Darabad R. Overview of typing techniques as molecular epidemiology tools for bacterial characterization. Cell Mol Biomed Rep 2021; 1(2): 69-77.
3. Fathi A, Barak M, Damandan M, Amani F, Moradpour R, Khalilova I, Valizadeh M. Neonatal Screening for Glucose-6-phosphate dehydrogenase Deficiency in Ardabil Province, Iran, 2018-2019. Cell Mol Biomed Rep 2021; 1(1): 1-6.
4. Tourang M, Fang L, Zhong Y, Suthar RC. Association between Human Endogenous Retrovirus K gene expression and breast cancer. Cell Mol Biomed Rep 2021; 1(1): 7-13.
5. Azeez SH, Jafar SN, Aziziaram Z, Fang L, Mawlood AH, Ercisli MF. Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mol Biomed Rep 2021; 1(1): 42-51.
6. Malik A, Jee B, Gupta SK. Preeclampsia: Disease biology and burden, its management strategies with reference to India. Pregnancy Hypertens 2019; 15: 23-31.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Armaly Z, Jadaon JE, Jabbour A, Abassi ZA. Preeclampsia: novel mechanisms and potential therapeutic approaches. Front Physiol 2018; 9: 973.
8. Moser M. Working group report on high blood pressure in pregnancy. J Clin Hypertens 2001; 3(2): 75-88.
9. Tikkanen M. Placental abruption: epidemiology, risk factors and consequences. Acta Obstet Gynecol Scand 2011; 90(2): 140-149.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
10. Cunningham Jr MW, LaMarca B. Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy. Am J Physiol Regul Integr Comp Physiol 2018; 315(3): R521-R528.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
11. Khaliq OP, Konoshita T, Moodley J, Naicker T. The role of uric acid in preeclampsia: is uric acid a causative factor or a sign of preeclampsia?. Curr Hypertens Rep 2018; 20(9): 1-9.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
12. Mol BW, Roberts CT, Thangaratinam S, Magee LA, De Groot CJ, Hofmeyr GJ. Pre-eclampsia. Lancet 2016; 387(10022): 999-1011.
CrossRef    Google Scholar    full-text PDF    PubMed   
13. Staff AC, Fjeldstad HE, Fosheim IK, Moe K, Turowski G, Johnsen GM, Alnaes-Katjavivi P, Sugulle M. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol 2020.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
14. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol Mech Dis 2010; 5: 173-192.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Al-Jameil N, Khan FA, Khan MF, Tabassum H. A brief overview of preeclampsia. Journal of clinical medicine research. 2014; 6(1): 1-7.
16. Witkowska K, Smith KM, Yao SY, Ng AM, O'Neill D, Karpinski E, Young JD, Cheeseman CI. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol 2012; 303(4): F527-F539.
17. Many A, Hubel CA, Roberts JM. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol 1996; 174(1): 288-291.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
18. Bainbridge SA, Roberts JM. Uric acid as a pathogenic factor in preeclampsia. Placenta 2008; 29: 67-72.
19. Punthumapol C, Kittichotpanich B. Serum calcium, magnesium and uric acid in preeclampsia and normal pregnancy. J Med Assoc Thai 2008; 91(7): 968-973.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
20. Nair A, Savitha C. Estimation of serum uric acid as an indicator of severity of preeclampsia and perinatal outcome. J Obstet Gynaecol India 2017; 67(2): 109-118.
21. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol 2016; 213: 8-14.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Jeyabalan A, Conrad KP. Renal function during normal pregnancy and preeclampsia. Front Biosci 2007; 12(1): 2425-2437.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
23. Moran P, Lindheimer MD, Davison JM. The renal response to preeclampsia. Semin Nephrol 2004; 24(6): 588-595.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
24. Bortolotti M, Polito L, Battelli MG, Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol 2021; 41: 101882.
25. Aziziaram Z, Bilal I, Zhong Y, Mahmod AK, Roshandel MR. Protective effects of curcumin against naproxen-induced mitochondrial dysfunction in rat kidney tissue. Cell Mol Biomed Rep 2021; 1(1): 23-32.
26. Hu J, Xu W, Yang H, Mu L. Uric acid participating in female reproductive disorders: a review. Reprod Biol Endocrinol 2021; 19(1): 1-1.
27. Lim KH, Friedman SA, Ecker JL, Kao L, Kilpatrick SJ. The clinical utility of serum uric acid measurements in hypertensive diseases of pregnancy. Am J Obstet Gynecol 1998; 178(5): 1067-1071.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol 1998; 179(5): 1359-1375.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Feig DI, Nakagawa T, Karumanchi SA, Oliver WJ, Kang DH, Finch J, Johnson RJ. Hypothesis: uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int 2004; 66(1): 281-287.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
30. Karumanchi SA, Maynard SE, Stillman IE, Epstein FH, Sukhatme VP. Preeclampsia: a renal perspective. Kidney Int 2005; 67(6): 2101-2113.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
31. Lüscher B, Surbek D, Clemençon B, Huang X, Albrecht C, Marini C, Hediger M, Baumann M. Different Pharmacological Properties of GLUT9a and GLUT9b: Potential Implications in Preeclampsia. Cell Physiol Biochem 2019; 53(3): 508-517.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
32. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 2013; 34(2-3): 121-138.
33. So A, Thorens B. Uric acid transport and disease. J Clin Investig 2010; 120(6): 1791-1799.
34. Xu L, Shi Y, Zhuang S, Liu N. Recent advances on uric acid transporters. Oncotarget 2017; 8(59): 100852-100862.
35. Xuan-Long YI, Jiang LI, Dong-Mei ME, Yan-Jun LI, Yan-Hong LI, Hong-Min MA, Ying YU, Shi-Chao XI. An intron variant of SLC2A9 increases the risk for type 2 diabetes mellitus complicated with hyperuricemia in Chinese male population. Iran J Public Health 2018; 47(6): 844-851.
36. Fernández-Torres J, Martínez-Nava GA, Oliviero F, López-Reyes AG, Martínez-Flores K, Garrido-Rodríguez D, Francisco-Balderas A, Zamudio-Cuevas Y. Common gene variants interactions related to uric acid transport are associated with knee osteoarthritis susceptibility. Connect. Tissue Res 2019; 60(3): 219-229.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
37. Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, Nakagawa T, Madero M, Feig DI, Borghi C, Piani F, Cara-Fuentes G, Bjornstad P, Lanaspa MA. Uric acid and hypertension: an update with recommendations. Am J Hypertens 2020; 33(7): 583-594.
38. Li L, Zhang Y, Zeng C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am J Trans Res 2020; 12(7): 3167-3181.
39. Sun X, Zhang R, Jiang F, Tang S, Chen M, Peng D, Yan J, Wang T, Wang S, Bao Y, Hu C. Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population. PLoS One 2015; 10(1): e0116714.
40. Tu HP, Chung CM, Min-Shan Ko A, Lee SS, Lai HM, Lee CH, Huang CM, Liu CS, Ko YC. Additive composite ABCG2, SLC2A9 and SLC22A12 scores of high-risk alleles with alcohol use modulate gout risk. J Hum Genet 2016; 61(9): 803-810.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Khaliq OP, Konoshita T, Moodely J, Ramsuran V, Naicker T. Gene polymorphisms of uric acid are associated with pre-eclampsia in South Africans of African ancestry. Hypertens Pregnancy 2020; 39(2): 103-116.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed