Genetic and epigenetic collaboration in Parkinson’s disease

Document Type : Review Paper

Authors

Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

10.22034/CAJMPSI.2021.04.01

Abstract

Parkinson's disease (PD) is a common neurodegenerative syndrome directly related to age development. This pathologic condition presents in many types of forms. Some efforts applied to understand PD development include regulation of epigenetic mechanisms, which usually include minor molecular modifications of DNA and histones, which are essential to regulate genetic activity. We have highlighted the problems associated with the development of genetic and epigenetic processes and reviewed several studies. None of these led to more vital conclusions about the autonomous roles of epigenetic pathways. Data from the current standpoint suggested that the SNCA, one of the hallmark genes implicated in PD, is more prevalent than pathways that directly require DNA methylation due to complicated DNA hydroxyl-methylation, global hyper-acetylation and histone deacetylase (HDAC). Without current epigenetic clinical goals to delay PD progression, we hypothesize how PD neurons, with the potential therapeutic objectives, can affect local and global epigenetics via inflammation, oxidative stress, autophagy and DNA repair mechanisms.

Graphical Abstract

Genetic and epigenetic collaboration in Parkinson’s disease

Highlights

  • Parkinson's disease (PD) is a common neurodegenerative syndrome.
  • Reduced activity of dopamine (DA) in Substantia Nigra is linked to PD.
  • Epigenetics and genetics are highly interconnected in PD.
  • 10–15% prevalence of Parkinson's disease has a family-oriented basis.
  • SNCA has a role in the pathogenesis of Parkinson's disease.

Keywords

Main Subjects


1. Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 2009; 19(10): 1732-1741.
2. Armstrong RA, Lantos PL, Cairns NJ. What determines the molecular composition of abnormal protein aggregates in neurodegenerative disease?. Neuropathology 2008; 28(4): 351-365.
3. Van Baak TE, Coarfa C, Dugué PA, Fiorito G, Laritsky E, Baker MS, Kessler NJ, Dong J, Duryea JD, Silver MJ, Saffari A. Epigenetic supersimilarity of monozygotic twin pairs. Genome Biol 2018; 19(1): 1-20.
4. Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, Pletikos M, Pattni R, Chen BJ, Venturini E, Riley-Gillis B. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 2018; 359(6375): 550-555.
5. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21(3): 381-395.
7. Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015; 16(10): 593-610.
8. Huse DM, Schulman K, Orsini L, Castelli‐Haley J, Kennedy S, Lenhart G. Burden of illness in Parkinson's disease. Official J Mov Disord Soc 2005; 20(11): 1449-1454.
9. De Rijk MD, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A. Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000; 54(11): S21-S23. ISSN: 0028-3878
10. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 2003; 157(11): 1015-1022.
11. De Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol 2006; 5(6): 525-535.
12. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007; 68(5): 384-386.
13. Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, Hardy J, Leverenz JB, Del Tredici K, Wszolek ZK, Litvan I. Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurol 2009; 8(12): 1150-1157.
14. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature 1997; 388(6645): 839-840.
15. Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 2011; 33(6): 1139-1151.
16. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2(7): 492-501.
17. Fahn S. Description of Parkinson's disease as a clinical syndrome. Ann NY Acad Sci 2003; 991: 1-4.
18. Lang AE, Lozano AM. Parkinson's disease. New England J Med 1998; 339(16): 1130-1143.
19. Savica R, Rocca WA, Ahlskog JE. When does Parkinson disease start?. Arch Neurol 2010; 67(7): 798-801.
21. Halliday G, Hely M, Reid W, Morris J. The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 2008; 115(4): 409-415.
22. Zaccai J, Brayne C, McKeith I, Matthews F, Ince PG. Patterns and stages of α-synucleinopathy: relevance in a population-based cohort. Neurology 2008; 70(13): 1042-1048.
23. Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 2015; 31(3): 140-149.
25. Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson's disease. Ann Rev Genom Hum Genet 2011; 12: 301-325.
26. Hardy J, Cai H, Cookson MR, Gwinn‐Hardy K, Singleton A. Genetics of Parkinson's disease and parkinsonism. Ann Neurol 2006; 60(4): 389-398.
28. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 2004; 364(9440): 1167-1169.
29. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra AN, Lincoln S, Crawley A. [alpha]-synuclein locus triplication causes Parkinson's disease. Science 2003; 302(5646): 841-842.
30. IIbáñez P, Bonnet AM, Débarges B. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 2004; 364(9440): 1169-1171.
31. Guardia-Laguarta C, Area-Gomez E, Schon EA, Przedborski S. Novel subcellular localization for α-synuclein: possible functional consequences. Front Neuroanat 2015; 9: 17.
32. Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Melov S, Andersen JK. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med 2012; 53(4): 993-1003.
33. Yu S, Zuo X, Li Y, Zhang C, Zhou M, Zhang YA, Uéda K, Chan P. Inhibition of tyrosine hydroxylase expression in α-synuclein-transfected dopaminergic neuronal cells. Neurosci Lett 2004; 367(1): 34-39.
34. Specht CG, Tigaret CM, Rast GF, Thalhammer A, Rudhard Y, Schoepfer R. Subcellular localisation of recombinant α-and γ-synuclein. Mol Cell Neurosci 2005; 28(2): 326-334.
35. Bonifati V. Genetics of Parkinson's disease–state of the art, 2013. Parkinsonism Relat Disord 2014; 20: S23-S28.
36. Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011; 89(1): 168-175.
37. Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B. VPS35 mutations in Parkinson disease. Am J Hum Genet 2011; 89(1): 162-167.
38. Braschi E, Goyon V, Zunino R, Mohanty A, Xu L, McBride HM. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol 2010; 20(14): 1310-1315.
39. MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 2013; 77(3): 425-439.
40. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(1): a008888.
41. Schlossmacher MG, Cullen V, Müthing J. The glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. New England J Med 2005; 352(7): 728-731.
42. Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R. Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA–induced dyskinesia and histone activation. Biol Psychiatry 2009; 66(6): 603-613.
43. International Parkinson's Disease Genomics Consortium, Wellcome Trust Case Control Consortium 2 (WTCCC2. A two-stage meta-analysis identifies several new loci for Parkinson's disease. PLoS Genet 2011; 7(6): e1002142.
45. Chen PS, Wang CC, Bortner CD, Peng GS, Wu X, Pang H, Lu RB, Gean PW, Chuang DM, Hong JS. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 2007; 149(1): 203-212.
46. Peng GS, Li G, Tzeng NS, Chen PS, Chuang DM, Hsu YD, Yang S, Hong JS. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Mol Brain Res 2005; 134(1): 162-169.
47. Marinova Z, Ren M, Wendland JR, Leng Y, Liang MH, Yasuda S, Leeds P, Chuang DM. Valproic acid induces functional heat‐shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem 2009; 111(4): 976-987.
48. Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum  Mol Genet 2008; 17(23): 3767-3775.
50. Watanabe Y, Maekawa M. Methylation of DNA in cancer. Adv Clin Chem 2010; 52: 145-167.
51. Chen H, Dzitoyeva S, Manev H. Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 2012; 690(1-3): 51-59.
52. Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, Kinyamu H, Lu N, Gao X, Leng Y, Chuang DM. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 2008; 11(8): 1123-1134.
54. Leng Y, Marinova Z, Reis-Fernandes MA, Nau H, Chuang DM. Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci Lett 2010; 476(3): 127-132.
55. Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 2011; 286(17): 14941-14951.
56. Blandini F, Fancellu R, Martignoni E, Mangiagalli A, Pacchetti C, Samuele A, Nappi G. Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 2001; 47(6): 1102-1104.
57. Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W. Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem 2009; 55(10): 1852-1860.
58. Maeda T, Guan JZ, Oyama JI, Higuchi Y, Makino N. Aging-associated alteration of subtelomeric methylation in Parkinson's disease. J Gerontol Series A: Biomed Sci Med Sci 2009; 64(9): 949-955.
59. Margis R, Margis R, Rieder CR. Identification of blood microRNAs associated to Parkinsońs disease. J Biotechnol 2011; 152(3): 96-101.
60. Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Martí E. MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20(15): 3067-3078.
62. Fukuda T. Neurotoxicity of MPTP. Neuropathology 2001; 21(4): 323-332.
63. Van Maele-Fabry G, Hoet P, Vilain F, Lison D. Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies. Environ Int 2012; 46: 30-43.
64. Zaheer F, Slevin JT. Trichloroethylene and Parkinson disease. Neurol Clin 2011; 29(3): 657-665.
65. Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chem Biol Interact 2010; 188(2): 289-300.
66. Kanthasamy A, Jin H, Anantharam V, Sondarva G, Rangasamy V, Rana A, Kanthasamy A. Emerging neurotoxic mechanisms in environmental factors-induced neurodegeneration. Neurotoxicology 2012; 33(4): 833-837.
68. Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 2011; 32(5): 586-595.
69. Nicholas AP, Lubin FD, Hallett PJ, Vattem P, Ravenscroft P, Bezard E, Zhou S, Fox SH, Brotchie JM, Sweatt JD, Standaert DG. Striatal histone modifications in models of levodopa‐induced dyskinesia. J Neurochem 2008; 106(1): 486-494.
70. Thomas B, Mandir AS, West N, Liu Y, Andrabi SA, Stirling W, Dawson VL, Dawson TM, Lee MK. Resistance to MPTP-neurotoxicity in α-synuclein knockout mice is complemented by human α-synuclein and associated with increased β-synuclein and Akt activation. PloS One 2011; 6(1): e16706.
71. Jones PA, Archer TK, Baylin SB, Beck S, Berger S, Bernstein BE, Carpten JD, Clark SJ, Costello JF, Doerge RW, Esteller M. Moving AHEAD with an international human epigenome project. Nature 2008; 454(7205): 711.