Extrinsic and intrinsic pathways of apoptosis and related molecules in ischemic stroke

Document Type : Narrative Review

Authors

1 Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Cerebral ischemia is a disease in which there is not enough blood flow to the brain tissue for metabolism. Stroke includes two types of ischemic with a frequency of approximately 85% and hemorrhagic with a frequency of approximately 15%. Various mechanisms cause neuronal death in cerebral ischemia, including increased extracellular glutamate amino acid concentration, inflammation, oxidative stress, apoptosis, and necrosis-induced cell death. Each of these mechanisms appears to extend through distinct molecular cascades. Although several mechanisms are involved in the pathogenesis of cerebral ischemia, apoptosis plays a major role in cell death after cerebral ischemia. Some minutes after the onset of focal cerebral ischemia, the core region in the brain ischemic tissues severe blood flow is fatally damaged, leading to cell death. Following cerebral ischemia, apoptosis begins through two general pathways. One is the intrinsic pathway that occurs mainly in the mitochondria and releases cytochrome C and is involved in the stimulation of caspase-3. The other is the extrinsic pathway that begins with the activity of death receptors on the surface of neurons and leads to the stimulation of caspase-8. Key molecules are involved in the process of cell apoptosis, the most important of which are calpain, caspases, and c-Jun N-terminal kinases. This study aimed to describe the process of apoptosis in cerebral ischemia and to introduce the above-mentioned molecules.

Graphical Abstract

Extrinsic and intrinsic pathways of apoptosis and related molecules in ischemic stroke

Highlights

  • Cerebral ischemia is a disease in which there is not enough blood flow to the brain tissue for metabolism.
  • Apoptosis plays a major role in cell death after cerebral ischemia.
  • Following cerebral ischemia, apoptosis begins through two general pathways, intrinsic and extrinsic.
  • Calpain, caspases, and JNK are among the most important molecules involved in cerebral ischemia-induced apoptosis.

Keywords

Main Subjects


1. Haramati O, Mane R, Molczadzki G, Perez-Polo JR, Chalifa-Caspi V, Golan HM. Magnesium sulfate treatment alters fetal cerebellar gene expression responses to hypoxia. Int J Develop Neurosci 2010; 28(2): 207-216.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
2. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 2009; 7(1): 97-107.
3. Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10(5): 471-480.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Sun Y, Jiang J, Zhang Z, Yu P, Wang L, Xu C, Liu W, Wang Y. Antioxidative and thrombolytic TMP nitrone for treatment of ischemic stroke. Bioorg Med Chem 2008; 16(19): 8868-8874.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
6. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008; 9(3): 231-241.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Zhu J, Shen W, Gao L, Gu H, Shen S, Wang Y, Wu H, Guo J. PI3K/Akt-independent negative regulation of JNK signaling by MKP-7 after cerebral ischemia in rat hippocampus. BMC Neurosci 2013; 14(1): 1-11.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
9. Won SJ, Kim DY, Gwag BJ. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 2002; 35(1): 67-86.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
10. Yang M, Abdalrahman H, Sonia U, Mohammed A, Vestine U, Wang M, Ebadi AG, Toughani M. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol 2020; 2: 23-30.
11. Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J. Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 2009; 6(3): 207-213.
12. Repici M, Centeno C, Tomasi S, Forloni G, Bonny C, Vercelli A, Borsello T. Time-course of c-Jun N-terminal kinase activation after cerebral ischemia and effect of D-JNKI1 on c-Jun and caspase-3 activation. Neuroscience 2007; 150(1): 40-49.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
13. Liu T, Perry G, Chan HW, Verdile G, Martins RN, Smith MA, Atwood CS. Amyloid-beta-induced toxicity of primary neurons is dependent upon differentiation-associated increases in tau and cyclin-dependent kinase 5 expression. J Neurochem 2004; 88(3): 554-563.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
14. Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R. Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 2003; 278(16): 14162-14167.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Sharma AK, Rohrer B. Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 2004; 279(34): 35564-35572.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. Li J, Nixon R, Messer A, Berman S, Bursztajn S. Altered gene expression for calpain/calpastatin system in motor neuron degeneration (Mnd) mutant mouse brain and spinal cord. Brain Res Mol Brain Res 1998; 53(1-2): 174-186.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
18. Saulle E, Gubellini P, Picconi B, Centonze D, Tropepi D, Pisani A, Morari M, Marti M, Rossi L, Papa M, Bernardi G. Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Mol Cell Neurosci 2004; 25(1): 9-20.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
19. Smith MA, Casadesus G, Joseph JA, Perry G. Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radical Biol Med 2002; 33(9): 1194-1199.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
21. Perez J, Dansou B, Hervé R, Levi C, Tamouza H, Vandermeersch S, Demey-Thomas E, Haymann JP, Zafrani L, Klatzmann D, Boissier MC. Calpains Released by T Lymphocytes Cleave TLR2 To Control IL-17 Expression. J Immunol 2016; 196(1): 168-181.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Manuel Matamala J, Carrasco R, Miranda-Merchak A, Feuerhake W. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 2013; 12(5): 698-714.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
23. Bao S, Ebadi A, Toughani M, Dalle J, Maseleno A, Yıldızbası A. A new method for optimal parameters identification of a PEMFC using an improved version of Monarch Butterfly Optimization Algorithm. Int J Hydrogen Energy 2020; 45(35): 17882-17892.
24. Wang Y, Dou S, Zhang Q, Ebadi AG, Chen J, Toughani M. Bacterial Separation and Community Diversity Analysis of Petroleum Contaminated Soil in Yumen Oilfield. Rev Chim 2020; 71(3): 595-607.
25. McCullough LD, Blizzard K, Simpson ER, Oz OK, Hurn PD. Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J Neurosci 2003; 23(25): 8701-8705.
26. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW. Effect of Ischemia on Known Substrates and Cofactors of the Glycolytic Pathway in Brain. J Biol Chem 1964; 239: 18-30.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Yang M, Efehi N, Jin Y, Zhang Q, Ebadi AG, Toughani M. Hot Water Extraction of Crude Polysaccharide from Codonopsis pilosula and Determination of the Rheological Properties. Rev Chim 2020; 71(5): 441-449.
28. Brott T, Bogousslavsky J. Treatment of acute ischemic stroke. New England J Med 2000; 343(10): 710-722.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Cho SG, Choi EJ. Apoptotic signaling pathways: caspases and stress-activated protein kinases. J Biochem Mol Biol 2002; 35(1): 24-27.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
30. Yang M, Mercy AO, Efehi N, Venera M, Liu X, Ebadi AG, Toughani M. Evaluation of Physicochemical and DPPH· Cleaning Activity of Ultrasonic Assisted Extraction of Polysaccharide from Leonurus japonicas. Rev Chim 2020; 71(4): 601-614.
31. Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, Chuang YC. Roles of Oxidative Stress, Apoptosis, PGC-1alpha and Mitochondrial Biogenesis in Cerebral Ischemia. Int J Mol Sci 2011; 12(10): 7199-7215.
32. Sairanen T, Szepesi R, Karjalainen-Lindsberg ML, Saksi J, Paetau A, Lindsberg PJ. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol 2009; 118(4): 541-552.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
33. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79(4): 1431-1568.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
34. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 2005; 25(44): 10262-10272.
35. Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 2001; 21(2): 99-109.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
36. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
37. Cho BB, Toledo-Pereyra LH. Caspase-independent programmed cell death following ischemic stroke. J Invest Surg 2008; 21(3): 141-147.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
38. Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 2006; 57(5): 545-553.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
39. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron 2010; 67(2): 181-198.
40. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke 2009; 40(5): e331-e339.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Neumar RW, Meng FH, Mills AM, Xu YA, Zhang C, Welsh FA, Siman R. Calpain activity in the rat brain after transient forebrain ischemia. Experiment Neurol 2001; 170(1): 27-35.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
43. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol 1998; 140(6): 1485-1495.
44. Liang H, Khan ZI, Ahmad K, Nisar A, Mahmood Q, Ebadi AG, Toughani M. Assessment of Zinc and Nickel Profile of Vegetables Grown in Soil Irrigated with Sewage Water. Rev Chim 2020; 71(4): 500-511.
45. Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sinica 2005; 37(11): 719-727.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev 2003; 193: 10-21.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
47. Adrain C, Martin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 2001; 26(6): 390-397.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
48. Wen L, Zhang Y, Yang B, Han F, Ebadi AG, Toughani M. Knockdown of Angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol 2020; 66(5): 117-124.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
50. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995; 81(5): 801-809.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
51. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nat 1995; 376(6535): 37-43.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
52. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nat 1994; 371(6495): 346-347.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
53. Cui J, Zhang M, Zhang YQ, Xu ZH. JNK pathway: diseases and therapeutic potential. Acta Pharmacol Sinica 2007; 28(5): 601-608.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
54. Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 2007; 1773(8): 1341-1348.
55. Tarantino G, Caputi A. JNKs, insulin resistance and inflammation: A possible link between NAFLD and coronary artery disease. World J Gastroenterol 2011; 17(33): 3785.
56. Jing LI, Anning LI. Role of JNK activation in apoptosis: a double-edged sword. Cell Res 2005; 15(1): 36-42.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
58. Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 2006; 70(4): 1061-1095.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
59. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103(2): 239-252.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
60. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-6251.
61. Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, Xu Y, Huang L, Ma C, An Y, Zhao RC. Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macacafascicularis. Brain Res 2010; 1334: 65-72.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
62. Vahidinia Z, Alipour N, Atlasi MA, Naderian H, Beyer C, AzamiTameh A. Gonadal steroids block the calpain-1-dependent intrinsic pathway of apoptosis in an experimental rat stroke model. Neurol Res 2017; 39(1): 54-64.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
63. Chen B, Wang G, Li W, Liu W, Lin R, Tao J, Jiang M, Chen L, Wang Y. Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke. Exp Cell Res 2017; 351(2): 163-172.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed