MicroRNAs as precise diagnostic biomarkers: A review

Document Type : Review Paper

Author

Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

miRNAs (also known as endogenous noncoding RNAs, or "ncRNAs") are a family of endogenous ncRNAs that are small (about 22 nucleotides in length). Too far, about 2,500 distinct microRNAs have been reported in various publications and new interest in miRNA biological function has arisen due to the recent advancement in molecular biology, As a result, it's unsurprising that abnormal miRNA expression plays a role in the pathogenesis of a variety of illnesses, including cardiovascular disease, neurodegenerative disease, and cancer. Current needs are not being satisfied by conventional miRNA detection techniques. In contrast, immunoassay techniques, and next-generation sequencing (NGS) have been extensively used to detect miRNA with great sensitivity. These novel methods have advanced the functional study and clinical diagnostics of miRNAs. In this paper, we highlight the latest advancements in miRNA detection methods and their possible future uses. It will guide follow-up methods that are very sensitive and specific as well as pertinent to disease diagnosis and treatment.

Graphical Abstract

MicroRNAs as precise diagnostic biomarkers: A review

Highlights

  • Intracellular miRNA levels affect the expression of many genes, and are connected to cellular signaling and cellular metabolisms such as Cell division, regeneration, and apoptosis.
  • Real-time qPCR is widely used for miRNA identification because of its large dynamic range, excellent accuracy, and sequence uniqueness.
  • NGS is capable of collecting a variety of materials, including body fluids, and generating sequence information for almost 10 million randomly selected nucleic acid molecules.
  • NGS is a great technique for doing research and identifying genetic variants that need multi-gene analysis due to a large number of readings.

Keywords

Main Subjects


1. Lan W, Wang J, Li M, Liu J, Wu FX, Pan Y. Predicting microRNA-disease associations based on improved microRNA and disease similarities. Trans Comput Biol Bioinform 2016; 15(6): 1774-1782.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
2. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q. An analysis of human microRNA and disease associations. PloS One 2008; 3(10):e3420.
3. Wronska A, Kurkowska‐Jastrzebska I, Santulli G. Application of micro RNA s in diagnosis and treatment of cardiovascular disease. Acta Physiol 2015; 213(1): 60-83.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
4. Lau P, Bossers K, Janky RS, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A, Greenberg D, Papadopoulou AS. Alteration of the micro RNA network during the progression of Alzheimer''s disease. Mol Med 2013; 5(10): 1613-1634.
5. Van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012; 11(11): 860-872.
6. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a microRNA-related disease?. Trans Res 2011; 157(4): 253-264.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Wojciechowska A, Braniewska A, Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med 2017; 26(5): 865-874.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
8. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT. Altered microRNA expression in human heart disease. Physiol Genomics 2007; 31(3): 367-373.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
9. Rudnicki M, Perco P, D′ haene B, Leierer J, Heinzel A, Mühlberger I, Schweibert N, Sunzenauer J, Regele H, Kronbichler A, Mestdagh P. Renal micro RNA‐and RNA‐profiles in progressive chronic kidney disease. Eur J Clin Invest 2016; 46(3): 213-226.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
13. Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta Gene Regul Mech 2008; 1779(8): 471-478.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
14. Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 2010; 11(8): 926-35.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res 2010; 1338: 89-99.
16. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 2010; 3(6): 499-506.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. Cammaerts S, Strazisar M, De Rijk P, Del Favero J. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet 2015; 6: 186.
18. Van Rooij E, Marshall WS, Olson EN. Toward microrna–based therapeutics for heart disease: The sense in antisense. Circ Res 2008; 103(9): 919-928.
19. Dangwal S, Thum T. microRNA therapeutics in cardiovascular disease models. Rev Pharmacol Toxicol 2014; 54: 185-203.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
20. Lukiw WJ, Andreeva TV, Grigorenko AP, Rogaev EI. Studying micro RNA function and dysfunction in Alzheimer’s disease. Front Genet 2013; 3: 327.
21. Liu Y, Zeng X, He Z, Zou Q. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. Trans Comput Biol Bioinform 2016; 14(4): 905-915.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, Martelli F, Robbins RC. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 2010; 122(11_suppl_1): S124-S131.
23. Zhao Y, Jaber V, Alexandrov PN, Vergallo A, Lista S, Hampel H, Lukiw WJ. microRNA-based biomarkers in Alzheimer’s disease (AD). Front Neurosci 2020; 14: 1028.
24. Huang F, Yue X, Xiong Z, Yu Z, Liu S, Zhang W. Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations. Brief Bioinformatics 2021; 22(3): bbaa140.
25. Yang M, Abdalrahman H, Sonia U, Mohammed AI, Vestine U, Wang M, Ebadi AG, Toughani M. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol 2020; 66(2): 23-30.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
26. Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2020; 116(6): 1113-1124.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Yamamoto Y, Kondo S, Matsuzaki J, Esaki M, Okusaka T, Shimada K, Murakami Y, Enomoto M, Tamori A, Kato K, Aoki Y. Highly sensitive circulating microRNA panel for accurate detection of hepatocellular carcinoma in patients with liver disease. Hepatol Commun 2020; 4(2): 284-297.
28. Ma Z, Li L, Livingston MJ, Zhang D, Mi Q, Zhang M, Ding HF, Huo Y, Mei C, Dong Z. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. J Clin Invest 2020; 130(9).
29. Chen L, Zhong JL. MicroRNA and heme oxygenase-1 in allergic disease. Int Immunopharmacol 2020; 80: 106132.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
31. Liu X, Haniff HS, Childs-Disney JL, Shuster A, Aikawa H, Adibekian A, Disney MD. Targeted degradation of the oncogenic microRNA 17-92 cluster by structure-targeting ligands. J Am Chem Soc 2020; 142(15): 6970-6982.
32. Ge J, Hu Y, Deng R, Li Z, Zhang K, Shi M, Yang D, Cai R, Tan W. Highly sensitive microRNA detection by coupling nicking-enhanced rolling circle amplification with MoS2 quantum dots. Anal Chem 2020; 92(19): 13588-13594.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
33. Chen X, Guan NN, Sun YZ, Li JQ, Qu J. MicroRNA-small molecule association identification: from experimental results to computational models. Brief bioinformatics. 2020; 21(1): 47-61.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
35. Magayr TA, Song X, Streets AJ, Vergoz L, Chang L, Valluru MK, Yap HL, Lannoy M, Haghighi A, Simms RJ, Tam FW. Global microRNA profiling in human urinary exosomes reveals novel disease biomarkers and cellular pathways for autosomal dominant polycystic kidney disease. Kidney Int 2020; 98(2): 420-435.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
37. Horváth M, Horváthová V, Hájek P, Štěchovský C, Honěk J, Šenolt L, Veselka J. MicroRNA-331 and microRNA-151-3p as biomarkers in patients with ST-segment elevation myocardial infarction. Sci Rep 2020; 10(1): 1-8.
38. Xiao Z, Chen S, Feng S, Li Y, Zou J, Ling H, Zeng Y, Zeng X. Function and mechanisms of microRNA‑20a in colorectal cancer. Exp Ther Med 2020; 19(3): 1605-1616.
40. Wen L, Zhang Y, Yang B, Han F, Ebadi AG, Toughani M. Knockdown of Angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol 2020; 66(5): 117-124.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed     
41. Masud MK, Mahmudunnabi RG, Aziz NB, Stevens CH, Do‐Ha D, Yang S, Blair IP, Hossain MS, Shim YB, Ooi L, Yamauchi Y. Sensitive Detection of Motor Neuron Disease Derived Exosomal miRNA Using Electrocatalytic Activity of Gold‐Loaded Superparamagnetic Ferric Oxide Nanocubes. Chem Electro Chem 2020; 7(16): 3459-3467.
42. Martins B, Amorim M, Reis F, Ambrósio AF, Fernandes R. Extracellular vesicles and MicroRNA: putative role in diagnosis and treatment of diabetic retinopathy. Antioxidants 2020; 9(8): 705.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
44. Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int J Mol Sci 2020; 21(3): 700.
45. Gon Y, Shimizu T, Mizumura K, Maruoka S, Hikichi M. Molecular techniques for respiratory diseases: MicroRNA and extracellular vesicles. Respirology 2020; 25(2): 149-160.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Johnson J, Lakshmanan G, Biruntha M, Vidhyavathi RM, Kalimuthu K, Sekar D. Computational identification of MiRNA-7110 from pulmonary arterial hypertension (PAH) ESTs: a new microRNA that links diabetes and PAH. Hypertens Res 2020; 43(4): 360-362.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed