Effects of the lead, cadmium, manganese heavy metals, and magnesium oxide nanoparticles on nerve cell function in Alzheimer's and Parkinson's diseases

Document Type : Review Paper

Author

Department of Medical Laboratory Technique, Islamic University, Diwaniya, Iraq

Abstract

Nervous disorders affect the central nervous system and cause progressive impairment of the nervous system. These disorders are usually incurable and debilitating and are characterised by a loss of nerve cell function. The most common chronic neurological disorders are Parkinson's disease (PD) and Alzheimer's disease (AD). Damage to the nerves usually progresses with age, as seen in AD and PD. Although Parkinson's and Alzheimer's diseases are multifactorial, exposure to heavy metals in neurons could increase the risk of developing these diseases. Metals are essential for maintaining cellular homeostasis and life. They have critical structural, catalytic, and regulatory functions in various types of proteins such as receptors, enzymes, and transporters. However, high and toxic concentrations of metals can stimulate the formation of reactive oxygen species (ROS) via a vicious cycle by impairing mitochondrial function, leading to a reduction in ATP and eventually cell death through an apoptotic mechanism. As life expectancy increases, individuals are certainly exposed to higher metal concentrations over a long period of time, which may lead to an increase in the incidence of neurological diseases. The aim of this study was to describe the effects of heavy metals such as manganese, lead and cadmium on the progression of the neurological diseases Parkinson's and Alzheimer's disease.

Graphical Abstract

Effects of the lead, cadmium, manganese heavy metals, and magnesium oxide nanoparticles on nerve cell function in Alzheimer's and Parkinson's diseases

Highlights

  • Alzheimer's and Parkinson's diseases are multifactorial diseases.
  • The risk of developing Alzheimer's and Parkinson's increases with exposure to heavy metals.
  • High and toxic levels of metals can impair mitochondrial function.
  • Heavy metals could produce reactive oxygen species and activate apoptosis.

Keywords

Main Subjects


CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
2. Fathi A, Barak M, Damandan M, Amani F, Moradpour R, Khalilova I, Valizadeh M. Neonatal Screening for Glucose-6-phosphate dehydrogenase Deficiency in Ardabil Province, Iran, 2018-2019. Cell Mol Biomed Rep 2021; 1(1): 1-6.
3. Azeez SH, Jafar SN, Aziziaram Z, Fang L, Mawlood AH, Ercisli MF. Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mol Biomed Rep 2021; 1(1): 42-51.
4. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86(4): 883-901.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Davis GW, Bezprozvanny I. Maintaining the stability of neural function: a homeostatic hypothesis. Annu Rev Physiol 2001; 63(1): 847-869.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
6. Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 2005; 75(5): 321-41.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout Jr RF, Spray DC, Reichenbach A, Pannicke T, Pekny M. Glial cells in (patho) physiology. J Neurochem 2012; 121(1): 4-27.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
9. Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, KyunPark S. Heavy metals exposure and Alzheimer’s disease and related dementias. J Alzheimer's Dis 2020; 1-28.
10. Guan C, Dang R, Cui Y, Liu L, Chen X, Wang X, Zhu J, Li D, Li J, Wang D. Characterization of plasma metal profiles in Alzheimer’s disease using multivariate statistical analysis. Plos One 2017; 12(7): e0178271.
11. Olanow CW, Arendash GW. Metals and free radicals in neurodegeneration. Curr Opin Neurol 1994; 7(6): 548-558.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
12. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014; 7(2): 60-72.
13. Starakis I, Panos G, Koutras A, E Mazokopakis E. Pathogens and chronic or long-term neurologic disorders. Cardiovasc Hematol Disord Drug Targets 2011; 11(1): 40-52.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
14. Chen P, Miah MR, Aschner M. Metals and neurodegeneration. F1000Research. 2016; 5.
15. Farina M, Avila DS, Da Rocha JB, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2013; 62(5): 575-594.
16. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24): 5789.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
18. Stokin GB, Goldstein LS. Axonal transport and Alzheimer's disease. Annu Rev Biochem 2006; 75: 607-627.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
19. Savelieff MG, Lee S, Liu Y, Lim MH. Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem Biol 2013; 8(5): 856-865.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
20. Thomas P, Fenech M. A review of genome mutation and Alzheimer's disease. Mutagenesis 2007; 22(1): 15-33.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
21. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006; 26(40): 10129-10140.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
23. Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer’s disease. Acta Neuropathol 2013; 126(4): 461-477.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
24. Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends Mol Med 2017; 23(6): 512-533.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
25. Streit WJ, Kincaid-Colton CA. The brain’s immune system. Sci Am 1995; 273(5): 54-61.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
26. Fakhoury M. Microglia and astrocytes in Alzheimer's disease: implications for therapy. Curr Neuropharmacol 2018; 16(5): 508-518.
27. Radhakrishnan DM, Goyal V. Parkinson's disease: A review. Neurol India 2018; 66(7): 26.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Wong SL, Gilmour H, Ramage-Morin PL. Parkinson's disease: Prevalence, diagnosis and impact. Health Rep 2014; 25(11): 10-14.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Mishra AK, Dixit A. Dopaminergic Axons: Key Recitalists in Parkinson’s Disease. Neurochem Res 2021: 1-5.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
30. Kumakura K. Molecular mechanisms for neurotransmitter release. Tanpakushitsu kakusan koso. Protein Nucleic Acid Enzyme 1997; 42(3 Suppl): 261-274.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
31. Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 2000; 62(1): 63-88.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
32. McAuley JH. The physiological basis of clinical deficits in Parkinson’s disease. Prog Neurobiol 2003; 69(1): 27-48.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
33. Çakir Y. Modeling influences of dopamine on synchronization behavior of striatum. Netw Comput Neural Syst 2017; 28(1): 28-52.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
34. Vennam S, Georgoulas S, Khawaja A, Chua S, Strouthidis NG, Foster PJ. Heavy metal toxicity and the aetiology of glaucoma. Eye 2020; 34(1): 129-137.
35. Gidlow DA. Lead toxicity. Occup Med 2015; 65(5): 348-356.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
36. Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit 2005; 11(10): RA329.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
37. Onalaja AO, Claudio L. Genetic susceptibility to lead poisoning. Environ Health Perspect 2000; 108(suppl 1): 23-28.
38. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006; 7(1): 41-53.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
39. Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal toxicity links to Alzheimer's disease and neuroinflammation. J Mol Biol 2019; 431(9): 1843-1868.
40. Garza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit 2006; 12(3): RA57-RA65.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Antonio MT, Corpas I, Leret ML. Neurochemical changes in newborn rat’s brain after gestational cadmium and lead exposure. Toxicol Lett 1999; 104(1-2): 1-9.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
42. Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 1995; 57(1): 417-445.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
43. Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010; 345(1): 91-104.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
44. Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimer's Dis 2017; 57(4): 1105-1121.
45. Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 2003; 192(2-3): 95-117.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Waalkes MP. Cadmium carcinogenesis. Mutat Res Fundam Mol Mech Mutagen 2003; 533(1-2): 107-120.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
47. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2012; 33(3): 586-604.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
48. Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013; 2013: 898034.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
49. del Pino J, Moyano P, Anadon MJ, García JM, Díaz MJ, García J, Frejo MT. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration. Toxicology 2015; 336: 1-9.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    
51. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J Inorg Biochem 2019; 195: 120-129.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
52. Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MM, Bowman AB, Aschner M. Manganese homeostasis in the nervous system. J Neurochem 2015; 134(4): 601-610.
53. Erikson KM, Syversen T, Aschner JL, Aschner M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 2005; 19(3): 415-421.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
54. Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: vegetarian diets. J Acad Nutr Diet 2016; 116(12): 1970-1980.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
55. Michalke B, Fernsebner K. New insights into manganese toxicity and speciation. J Trace Elem Med Biol 2014; 28(2): 106-116.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
56. Takeda A. Manganese action in brain function. Brain Res Rev 2003; 41(1): 79-87.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
57. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep 2015; 2(3): 315-328.
58. Xin Y, Gao H, Wang J, Qiang Y, Imam MU, Li Y, Wang J, Zhang R, Zhang H, Yu Y, Wang H. Manganese transporter Slc39a14 deficiency revealed its key role in maintaining manganese homeostasis in mice. Cell Discov 2017; 3(1): 1-3.
59. Mercadante CJ, Prajapati M, Conboy HL, Dash ME, Herrera C, Pettiglio MA, Cintron-Rivera L, Salesky MA, Rao DB, Bartnikas TB. Manganese transporter Slc30a10 controls physiological manganese excretion and toxicity. J Clin Investig 2019; 129(12): 5442-5461.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
61. Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 2013; 62: 65-75.
62. Halliwell B. Role of free radicals in the neurodegenerative diseases. Drug Aging 2001; 18(9): 685-716.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
63. Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull 2014; 30(2): 271-281.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
66. Lai JC, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, Leung SW. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomed 2008; 3(4): 533-545.
67. Hasbullah NI, Mazatulikhma MZ, Kamarulzaman N. Nanotoxicity of Magnesium Oxide on Human Neuroblastoma SH-SY5Y Cell Lines. Adv Mater Res 2013; 667: 160-164.