Description of the characteristics, epidemiology, diagnosis, and risk factors of presbycusis disorder

Document Type : Review Paper

Author

Department of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, Sivas, Turkey

Abstract

Presbycusis is one of the most important and common diseases associated with aging. This disease is a symmetrical, irreversible and progressive bilateral disease of the cochlea. Complications of presbycusis include perceptual disorders such as tinnitus and hyperacusis. Methods for diagnosing this disease include signal-to-noise ratio, pure tone audiometry, and self-assessment. Many risk factors are involved in the development of presbycusis, which are divided into two categories: Environmental factors and genetic factors. Environmental risk factors include noise and external factors that influence lifestyle and diet. Individual health factors that are also involved in this disease include underlying diseases, ototoxic medications, and aging. Another group of risk factors involved in obesity are genetic factors. Genetic risk factors include abnormalities in genes involved in cochlear and mitochondrial genome function. The aim of this study was to describe the characteristics of presbycusis and the epidemiology, diagnostic methods, and risk factors for this disease.

Graphical Abstract

Description of the characteristics, epidemiology, diagnosis, and risk factors of presbycusis disorder

Highlights

  • Presbycusis is one of the most common diseases associated with aging.
  • Complications of presbycusis include perceptual disorders such as tinnitus and hyperacusis.
  • Risk factors for presbycusis include environmental and genetic factors.

Keywords

Main Subjects


1. Phillip JM, Aifuwa I, Walston J, Wirtz D. The mechanobiology of aging. Annu Rev Biomed Eng 2015; 17: 113-141.
2. Azeez SH, Jafar SN, Aziziaram Z, Fang L, Mawlood AH, Ercisli MF. Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mol Biomed Rep 2021; 1(1): 42-51.
3. Ercisli MF, Lechun G, Azeez SH, Hamasalih RM, Song S, Aziziaram Z. Relevance of genetic polymorphisms of the human cytochrome P450 3A4 in rivaroxaban-treated patients. Cell Mol Biomed Rep 2021; 1(1): 33-41.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies. J Clin Med 2020; 9(1): 218.
6. Huang Q, Tang J. Age-related hearing loss or presbycusis. Eur Arch Oto-Rhino-Laryngol 2010; 267(8): 1179-1191.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Ciorba A, Bianchini C, Pelucchi S, Pastore A. The impact of hearing loss on the quality of life of elderly adults. Clin Interv Aging 2012; 7: 159.
8. Wells HR, Newman TA, Williams FM. Genetics of ageā€related hearing loss. J Neurosci Res 2020; 98(9): 1698-1704.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
10. A Adeshara K, G Diwan A, S Tupe R. Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies. Curr Drug Targets 2016; 17(11): 1309-1328.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
11. Roth TN. Aging of the auditory system. Handb Clin Neurol 2015; 129: 357-373.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
12. Oghalai JS. The cochlear amplifier: augmentation of the traveling wave within the inner ear. Curr Opin Otolaryngol Head Neck Surg 2004; 12(5): 431.
13. Wong AC, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 2015; 7: 58.
14. Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Mares-Perlman JA, Nondahl DM. Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin: The epidemiology of hearing loss study. Am J Epidemiol 1998; 148(9): 879-886.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Nash SD, Cruickshanks KJ, Zhan W, Tsai MY, Klein R, Chappell R, Nieto FJ, Klein BE, Schubert CR, Dalton DS, Tweed TS. Long-term assessment of systemic inflammation and the cumulative incidence of age-related hearing impairment in the epidemiology of hearing loss study. J Gerontol A Biol Sci Med Sci 2014; 69(2): 207-214.
16. Di Stazio M, Morgan A, Brumat M, Bassani S, Dell'Orco D, Marino V, Garagnani P, Giuliani C, Gasparini P, Girotto G. New age-related hearing loss candidate genes in humans: An ongoing challenge. Gene 2020; 742: 144561.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. World Health Organization. Addressing the rising prevalence of hearing loss. 2018; 655-658.
18. Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111: 17-33.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
19. Seimetz BM, Teixeira AR, Rosito LP, Flores LS, Pappen CH, Dall'igna C. Pitch and loudness tinnitus in individuals with presbycusis. Int Arch Otorhinolaryngol 2016; 20: 321-326.
20. Zhang W, Yu Z, Ruan Q. Presbycusis-related tinnitus and cognitive impairment: gender differences and common mechanisms. Overview Manag Multiple Chronic Cond 2020.
21. Neri S, Mauceri B, Cilio D, Bordonaro F, Messina A, Malaguarnera M, Savastano M, Brescia G, Manci S, Celadini M. Tinnitus and oxidative stress in a selected series of elderly patients. Arch Gerontol Geriatr 2002; 35: 219-223.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Stapells DR, Oates P. Estimation of the pure-tone audiogram by the auditory brainstem response: a review. Audiol Neurotol 1997; 2(5): 257-280.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
23. Arlinger S. Audiometric profile in presbycusis. Acta Oto-Laryngol 1991; 111(sup476): 85-90.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
25. Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 2006; 26(7): 2115-2123.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Jung SY, Kim SH, Yeo SG. Association of nutritional factors with hearing loss. Nutrients 2019; 11(2): 307.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Huang T, Cheng AG, Stupak H, Liu W, Kim A, Staecker H, Lefebvre PP, Malgrange B, Kopke R, Moonen G, Van De Water TR. Oxidative stress-induced apoptosis of cochlear sensory cells: otoprotective strategies. Int J Develop Neurosci 2000; 18(2-3): 259-270.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Fujimoto C, Yamasoba T. Oxidative stresses and mitochondrial dysfunction in age-related hearing loss. Oxid Med Cell Longev 2014; 2014.
31. Ren HM, Ren J, Liu W. Recognition and control of the progression of age-related hearing loss. Rejuvenation Res 2013; 16(6): 475-486.
32. Fransen E, Topsakal V, Hendrickx JJ, Van Laer L, Huyghe JR, Van Eyken E, Lemkens N, Hannula S, Mäki-Torkko E, Jensen M, Demeester K. Occupational noise, smoking, and a high body mass index are risk factors for age-related hearing impairment and moderate alcohol consumption is protective: a European population-based multicenter study. J Assoc Res Otolaryngol 2008; 9(3): 264-276.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
33. Dawes P, Payton A. Genetics of age-related hearing loss. Gen Deafness 2016; 20: 84-96.
34. Bovo R, Ciorba A, Martini A. Environmental and genetic factors in age-related hearing impairment. Aging Clin Exp Res 2011; 23(1): 3-10.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
35. Iwai H, Lee S, Inaba M, Sugiura K, Baba S, Tomoda K, Yamashita T, Ikehara S. Correlation between accelerated presbycusis and decreased immune functions. Exp Gerontol 2003; 38(3): 319-325.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
36. Jayakody DM, Friedland PL, Martins RN, Sohrabi HR. Impact of aging on the auditory system and related cognitive functions: a narrative review. Front Neurosci 2018; 125.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
37. Ciorba A, Hatzopoulos S, Bianchini C, Aimoni C, Skarzynski H, Skarzynski PH. Genetics of presbycusis and presbystasis. Int J Immunopathol Pharmacol 2015; 28(1): 29-35.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
38. Karlsson KK, Harris JR, Svartengren M. Description and primary results from an audiometric study of male twins. Ear Hear 1997; 18(2): 114-120.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
39. Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 2013; 303: 30-38.
40. Fetoni AR, Picciotti PM, Paludetti G, Troiani D. Pathogenesis of presbycusis in animal models: a review. Exp Gerontol 2011; 46(6): 413-425.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Tawfik KO, Klepper K, Saliba J, Friedman RA. Advances in understanding of presbycusis. J Neurosci Res 2020; 98(9): 1685-1697.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
42. Chang NC, Dai CY, Lin WY, Yang HL, Wang HM, Chien CY, Hsieh MH, Ho KY. The Association of GRM7 Single Nucleotide Polymorphisms with Age-Related Hearing Impairment in a Taiwanese Population. J Int Adv Otol 2018; 14(2): 170.
43. Markaryan A, Nelson EG, Hinojosa R. Detection of mitochondrial DNA deletions in the cochlea and its structural elements from archival human temporal bone tissue. Mutat Res Fundam Mol Mech Mutag 2008; 640(1-2): 38-45.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
44. Kidd III AR, Bao J. Recent advances in the study of age-related hearing loss: a mini-review. Gerontology 2012; 58(6): 490-496.
45. Koide Y, Teranishi M, Sugiura S, Uchida Y, Nishio N, Kato K, Otake H, Yoshida T, Otsuka R, Ando F, Shimokata H. Association between Uncoupling Protein 2 Gene Ala55val Polymorphism and Sudden Sensorineural Hearing Loss. J Int Adv Otol 2018; 14(2): 166.