Influence of rs1800172 common gene variation on the structure and function of potassium voltage-gated channel subfamily Q member 1

Document Type : Research Paper

Authors

1 Department of Medical Researches, Cicilav Medical Facilities, Brayati, Erbil, Iraq

2 Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq

Abstract

The proper functioning of ion channels is essential for cell survival. One of the important ion channels is potassium voltage-gated channel subfamily Q member 1 (KCNQ), which consists of five genes whose main gene is KCNQ1 and encodes the voltage-gated potassium channel required for the phase of repolarization. KCNQ1 is mainly expressed in the heart muscle, inner ear, stomach, lungs, kidneys, intestines, and pancreas. This channel is essential for the proper functioning of cells in some organs of the body, including the heart and stomach. Thus, mutations and polymorphisms in this gene can alter the risk of some diseases, such as long QT syndrome and gastric cancer. The aim of this study was to investigate the effect of rs1800172 exon polymorphism on the function of the KCNQ1 gene using a bioinformatics approach. The ProtParam server was used to evaluate the primary structure of the protein. The PredictProtein server was used to investigate the effect of mutations on the secondary structure of the protein. Polyphen2 and SNAP2 servers were used to evaluate the effect of rs1800172 variety on overall protein structure and function. RNAsnp online software was used to investigate the effect of mutation on mRNA structure. Our study showed that rs1800172 polymorphism affects the primary and secondary structure of proteins. But this genetic variety did not affect mRNA structure. Investigation of the effect of KCNQ1 gene mutations including rs1800172 can be effective in identifying the pathological mechanisms of KCNQ1.

Graphical Abstract

Influence of rs1800172 common gene variation on the structure and function of potassium voltage-gated channel subfamily Q member 1

Highlights

  • Potassium channel KCNQ1 is essential for the proper functioning of some tissues such as the heart and stomach.
  • The rs1800172 polymorphism is an important exon variety in the structure of KCNQ1.
  • The rs1800172 polymorphism can affect the primary and secondary structure of proteins.

Keywords

Main Subjects


1. Zhang T, Moss A, Cong P, Pan M, Chang B, Zheng L, Fang Q, Zareba W, Robinson J, Lin C, Li Z. LQTS gene LOVD database. Hum Mutat 2010; 31(11): E1801-E1810.
2. Harrison SM, Riggs ER, Maglott DR, Lee JM, Azzariti DR, Niehaus A, Ramos EM, Martin CL, Landrum MJ, Rehm HL. Using ClinVar as a resource to support variant interpretation. Curr Protoc Hum Genet 2016; 89(1): 8-16.
3. Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN. The Human Gene Mutation Database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. Curr Protoc Bioinform 2012; 39(1): 1-3.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
4. Dvir M, Peretz A, Haitin Y, Attali B. Recent molecular insights from mutated IKS channels in cardiac arrhythmia. Curr Opin Pharmacol 2014; 15: 74-82.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Eldstrom J, Wang Z, Werry D, Wong N, Fedida D. Microscopic mechanisms for long QT syndrome type 1 revealed by single-channel analysis of IKs with S3 domain mutations in KCNQ1. Heart Rhythm 2015; 12(2): 386-394.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
6. Li B, Mendenhall JL, Kroncke BM, Taylor KC, Huang H, Smith DK, Vanoye CG, Blume JD, George Jr AL, Sanders CR, Meiler J. Predicting the functional impact of KCNQ1 variants of unknown significance. Circ Cardiovasc Genet 2017; 10(5): e001754.
7. Kapplinger JD, Tseng AS, Salisbury BA, Tester DJ, Callis TE, Alders M, Wilde AA, Ackerman MJ. Enhancing the predictive power of mutations in the C-terminus of the KCNQ1-encoded Kv7. 1 voltage-gated potassium channel. J Cardiovasc Transl Res 2015; 8(3): 187-197.
8. Moss AJ, Schwartz PJ, Crampton RS, Locati E, Carleen E. The long QT syndrome: a prospective international study. Circulation 1985; 71(1): 17-21.
9. Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer J, Hall WJ, Weitkamp L, Vincent GM, Garson Jr A. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 1991; 84(3): 1136-1144.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
10. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005; 2(5): 507-517.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
11. Spooner PM, Albert C, Benjamin EJ, Boineau R, Elston RC, George Jr AL, Jouven X, Kuller LH, MacCluer JW, Marbán E, Muller JE. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a National Heart, Lung, and Blood Institute workshop, part II. Circulation 2001; 103(20): 2447-2452.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
12. Duchatelet S, Crotti L, Peat RA, Denjoy I, Itoh H, Berthet M, Ohno S, Fressart V, Monti MC, Crocamo C, Pedrazzini M. Identification of a KCNQ1 polymorphism acting as a protective modifier against arrhythmic risk in long-QT syndrome. Circ Cardiovasc Genet 2013; 6(4): 354-361.
13. Wang Z, Tristani‐Firouzi M, Xu Q, Lin M, Keating MT, Sanguinetti MC. Functional effects of mutations in KvLQT1 that cause long QT syndrome. J Cardiovasc Electrophysiol 1999; 10(6): 817-826.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Liu X, Chen Z, Zhao X, Huang M, Wang C, Peng W, Yin J, Li J, He G, Li X, Zhu X. Effects of IGF2BP2, KCNQ1 and GCKR polymorphisms on clinical outcome in metastatic gastric cancer treated with EOF regimen. Pharmacogenomics 2015; 16(9): 959-970.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. Abbott GW. Biology of the KCNQ1 potassium channel. New J Sci 2014; 2014.
18. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 1996; 384(6604): 78-80.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
19. Dedek K, Waldegger S. Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract. Pflügers Archiv 2001; 442(6): 896-902.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
20. Forte JG, Forte GM, Saltman P. K+‐stimulated phosphatase of microsomes from gastric mucosa. J Cell Physiol 1967; 69(3): 293-304.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
21. Grahammer F, Wittekindt OH, Nitschke R, Herling AW, Lang HJ, Bleich M, Schmitt–Gräff A, Barhanin J, Warth R. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 2001; 120(6): 1363-1371.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel: from gene to physiological function. Physiology 2005; 20(6): 408-416.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
24. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Brandenburg SA, Litzi TJ, Bunton TE, Limb C, Francis H. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 2000; 106(12): 1447-1455.
25. Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 2005; 41(16): 2449-2461.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
26. Rice KS, Dickson G, Lane M, Crawford J, Chung SK, Rees MI, Shelling AN, Love DR, Skinner JR. Elevated serum gastrin levels in Jervell and Lange-Nielsen syndrome: a marker of severe KCNQ1 dysfunction?. Heart Rhythm 2011; 8(4): 551-554.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Roepke TK, Anantharam A, Kirchhoff P, Busque SM, Young JB, Geibel JP, Lerner DJ, Abbott GW. The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J Biol Chem 2006; 281(33): 23740-23747.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Sachs GE, Chang HH, Rabon E, Schackman RO, Lewin MI, Saccomani GA. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem 1976; 251(23): 7690-7698.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, Bibikova M, Chudin E, Barker DL, Dickinson T, Fan JB. Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Gen 2008; 4(2): e1000006.