Stem cell therapy as a promising approach in the treatment of neurodegenerative disorders

Document Type : Narrative Review

Author

Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran

Abstract

Neurodegenerative diseases in humans such as Parkinson's disease, Alzheimer's disease, stroke, multiple sclerosis, and Huntington's disease are associated with the loss of neurons or glial cells in the central nervous system. There are limited therapeutic approaches for these diseases,  making stem cell therapy a promising and novel method for these diseases. A variety of cells have been used to treat these diseases. These cells include mesenchymal stem cells, embryonic stem cells, nerve stem cells, etc. These cells use various mechanisms to protect neurons. These mechanisms include nutritional activity, inflammation modulation, cell replacement and so on. Of course, there are some challenges with this therapeutic approach, for example, different treatment approaches need to be chosen for different diseases. Also, the cell type used in a particular disease should be specifically selected. In addition, points such as the administrated dose, the method of transfer, etc. must be controlled. Also, the cells should be used in such a way that they do not cause further problems such as malignancy and the immune system activation. In this study, we review the effective evaluations taken in the cell therapy field against neurological disorders including Parkinson's, Alzheimer's, stroke, Huntington's, and multiple sclerosis, and then we describe the challenges and hopes in this field.

Graphical Abstract

Stem cell therapy as a promising approach in the treatment of neurodegenerative disorders

Highlights

  • Neurodegenerative diseases are correlated with the loss of glial cells or neurons.
  • The stem cell therapy is a promising and emerging approach for neurodegenerative diseases.
  • Stem cells use different mechanisms to protect neurons.

Keywords

Main Subjects


1. Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS. Stem cell therapy for neurological disorders. South Afr Med J 2019; 109(8 Supplement 1): S71- S78.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
2. Altarche-Xifro W, Di Vicino U, Muñoz-Martin MI, Bortolozzi A, Bové J, Vila M, Cosma MP. Functional rescue of dopaminergic neuron loss in Parkinson's disease mice after transplantation of hematopoietic stem and progenitor cells. Bio Med 2016; 8: 83-95.
3. Azeez SH, Jafar SN, Aziziaram Z, Fang L, Mawlood AH, Ercisli MF. Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mol Biom Rep 2021; 1(1): 42-51.
4. Bachoud-Lévi AC, Rémy P, Nǵuyen JP, Brugières P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B, Boissé MF. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 2000; 356(9246): 1975-1979.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 2005; 11(9): 966-972.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
6. Bales KR, Tzavara ET, Wu S, Wade MR, Bymaster FP, Paul SM, Nomikos GG. Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-Aβ antibody. J Clin Invest 2006; 116(3): 825-832.
7. Barker RA, Parmar M, Studer L, Takahashi J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 2017; 21(5): 569-573.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
9. Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovas Nurs 2009; 24(2): 98.
11. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegen 2019; 14(1): 1-8.
12. Feng Z, Gao F. Stem cell challenges in the treatment of neurodegenerative disease. CNS Neurosci Therap 2012; 18(2): 142-148.
13. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. New England J Med 2001; 344(10): 710-719.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
14. Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Evans A, Kern R. Novel approach to stem cell therapy in Parkinson's disease. Stem Cells Dev 2018; 27(14): 951-957.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Han F, Hu B. Stem Cell Therapy for Parkinson's Disease. Adv Exp Med Biol 2020; 1266: 21-38.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
16. Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ. Reducing amyloid plaque burden via ex vivo gene delivery of an Aβ-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 2007; 4(8): e262.
17. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Reg Med 2010; 5(6): 933-946.
18. Kheyrodin H, Jami R, Rehman FU. Cellular structure and molecular functions of plants, animals, bacteria, and viruses. Cell Mol Biomed Rep 2022; 2(1): 33-41.
19. Kim SU, De Vellis J. Stem cell‐based cell therapy in neurological diseases: a review. J Neurosci Res 2009; 87(10): 2183-2200.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
20. Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 2012; 1(6): 703-714.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
21. Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 2010; 120(1): 51-59.
22. Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mole Cell Biol 2010; 11(12): 849-860.
23. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011; 480(7378): 547-551.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
24. Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mole Sci 2020; 21(20): 7609.
25. Lindvall O, Barker RA, Brüstle O, Isacson O, Svendsen CN. Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell 2012; 10(2): 151-155.
26. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature 2006; 441(7097): 1094-1096.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med 2004; 10(7): S42- S50.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011; 471(7336): 68-73.
29. Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 2003; 23(6): 1992-1996.
30. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. J Compar Neurol 2004; 475(2): 211-219.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
32. Nguyen H, Zarriello S, Coats A, Nelson C, Kingsbury C, Gorsky A, Rajani M, Neal EG, Borlongan CV. Stem cell therapy for neurological disorders: a focus on aging. Neurobiol Dis 2019; 126: 85-104.
33. Nichols J, Smith A. Pluripotency in the embryo and in culture. Cold Spring Harbor Perspect Biol 2012; 4(8): a008128.
34. Niclis JC, Turner C, Durnall J, McDougal S, Kauhausen JA, Leaw B, Dottori M, Parish CL, Thompson LH. Long-distance axonal growth and protracted functional maturation of neurons derived from human induced pluripotent stem cells after intracerebral transplantation. Stem Cells Trans Med 2017; 6(6): 1547-1556.
35. Wen L, Zhang Y, Yang B, Han F, Ebadi AG, Toughani M. Knockdown of Angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol 2020; 66(5): 117-124.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed     
36. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005; 49(3): 385-396.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
37. S Pandya R, Mao L, Zhou H, Zhou S, Zeng J, John Popp A, Wang X. Central nervous system agents for ischemic stroke: neuroprotection mechanisms. Cent Nervous Syst Agents Med Chem 2011; 11(2): 81-97.
38. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107(7): 929-934.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    
39. Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O. Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci 1999; 2(12): 1137-1140.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
40. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003; 422(6933): 688-694.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005; 436(7048): 266-271.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
42. Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis 2004; 16(1): 68-77.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
43. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, Hälbig TD, Hesekamp H, Navarro SM, Meier N, Falk D. Neurostimulation for Parkinson's disease with early motor complications. New England J Med 2013; 368(7): 610-622.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
44. Yang M, Abdalrahman H, Sonia U, Mohammed AI, Vestine U, Wang M, Ebadi AG, Toughani M. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol 2020; 66(2): 23-30.
45. Sharma K. Cholinesterase inhibitors as Alzheimer's therapeutics. Mole Med Rep 2019; 20(2): 1479-1487.
47. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 2006; 24(3): 739-747.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
48. Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol 2002; 1(1): 51-57.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
49. Tuszynski MH, Thal L, Pay M, Salmon DP, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005; 11(5): 551-555.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
50. Yang M, Shi D, Wang Y, Ebadi AG, Toughani M. Study on Interaction of Coomassie Brilliant Blue G-250 with Bovine Serum Albumin by Multispectroscopic. Int J Peptide Res Therap 2021; 27(1): 421-431.
51. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells-current trends and future prospective. Biosci Rep 2015; 35(2).
52. Vermilyea SC, Guthrie S, Meyer M, Smuga-Otto K, Braun K, Howden S, Thomson JA, Zhang SC, Emborg ME, Golos TG. Induced pluripotent stem cell-derived dopaminergic neurons from adult common marmoset fibroblasts. Stem Cells Develop 2017; 26(17): 1225-1235.
53. Wang Q, Xu X, Li J, Liu J, Gu H, Zhang R, Chen J, Kuang Y, Fei J, Jiang C, Wang P. Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res 2011; 21(10): 1424-1435.
54. Wei L, Cui L, Snider BJ, Rivkin M, Steven SY, Lee CS, Adams LD, Gottlieb DI, Johnson Jr EM, Yu SP, Choi DW. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 2005; 19(1-2): 183-193.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
55. Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G, Roy NS, Goldman SA. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 2004; 10(1): 93-97.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
56. Yu Z, Wang T, Xu J, Wang W, Wang G, Chen C, Zheng L, Pan L, Gong D, Li X, Qu H. Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J Hum Gen 2015; 60(2): 85-90.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
57. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 1-22.