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 NARRATIVE REVIEW 

• Alzheimer's disease is a 

progressive and irreversible brain 

impairment in the elderly. 

• Beta-amyloid plaques and 

neurofibrillary tangles are the 

main pathological symptoms of 

Alzheimer's. 

• Non-coding RNAs could 

involve in the pathogenesis of 

Alzheimer's disease. 

 

 

Alzheimer's disease is a progressive and irreversible brain disorder. This disease is 

the most common reason for dementia in aged people. Pathological symptoms of 

this disease are the formation of beta-amyloid plaques and neurofibrillary tangles. 

Beta-amyloid plaques appear intercellularly, while neurofibrillary tangles appear 

intracellularly. Defects in genes such as PSEN, APP, BACE1, etc., can cause 

Alzheimer's. However, some mechanisms that alter gene expression can have the 

main role in disease pathogenesis. One of the post-transcriptional mechanisms that 

can alter gene expression is the involvement of non-coding RNAs. Many kinds of 

non-coding RNAs exist, two of which are microRNAs and long non-coding RNAs. 

These can alter the expression of many genes by influencing the stability or 

structure of mRNAs. Non-coding RNAs can alter the risk of Alzheimer's disease if 

they affect genes involved in Alzheimer's pathogenesis. The mechanisms of 

influence of non-coding RNAs on the onset and development of Alzheimer's are not 

clear. This study aimed to describe the mechanisms of involvement of non-coding 

RNAs in the pathogenesis of Alzheimer's disease. 
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Introduction 

Alzheimer's disease (AD) is a progressive neurological disorder that can affect the central nervous system 

and cause dementia, especially in the elderly. The main pathological properties of this illness are the formation 

of neurofibrillary tangles (NFTs) and amyloid-beta plaques (1). Neurofibrillary tangles form inside the cell and 

appear as accumulated and hyperphosphorylated forms of tau protein. But amyloid-beta (Aβ) plaques could 

aggregate intracellularly, and families with mutations in the Aβ-processing genes experience premature 

Alzheimer's accumulation (2). Although the formation of NFTs and Aβs are hallmarks of Alzheimer's, it is a 

multifactorial illness that impacts multiple cell signaling cascades. Among the pathways involved in this 

disease are apoptosis, synaptic dysfunction, excessive calcium influx, oxidative stress, neuroinflammation, and 

mitochondrial dysfunction. In addition, Aβ interacts with non-neuronal cells. For example, in the initial phases 

of Alzheimer's, Aβs are cleared by microglia, but later in the disease, these same cells release proinflammatory 

cytokines and exacerbate the symptoms of the disease (3, 4). 

Mutations in the APOE, APP, Prsilinin-1 and Persilinin-2 genes and some other key genes could be one of 

the reasons for Alzheimer's disease, where changes are made to proteins. But changes in gene expression can 

also contribute to Alzheimer's pathogenesis. One of the mechanisms that cause gene silencing at the mRNA 

level is the involvement of non-coding RNAs (ncRNAs). These RNAs can be biologically active and perform 

their functions in the cell in different ways. These RNAs include microRNAs or miRNAs, Piwi-interacting 

RNAs or piRNAs, small interfering RNAs or siRNAs, and long non-coding RNAs or lncRNA (5, 6). MicroRNAs 

are a group of ncRNAs that play a vital role in regulating gene expression. Most microRNAs are first 

transcribed from the genome and then converted to mature MicroRNA by various enzymes such as Dicer and 

Drosha. They can interact with the downstream end of mRNA and prevent or even degrade their expression (7). 

Recently, miRNAs have been shown to be involved in many cellular pathways. These molecules have a vast 

expression in neurons in the brain tissue and contribute to synaptogenesis and differentiation of nerve cells. 

Further research has shown that changes in the profile of miRNAs in neurons can interfere with the 

pathogenesis of Alzheimer's disease (8, 9).  

The other group of non-coding RNAs is lncRNAs, which produce longer transcripts of miRNAs and are 

similar in their maturation steps to their coding steps, which are performed in the nuclear space and then 

transferred to the cytoplasm. But they are not as protected as the coding genes. Studies have shown that the 

mammalian genome contains many lncRNAs loci that are not easy to classify. These molecules contribute to the 

cellular procedure, including cell proliferation, apoptosis, and pathological processes such as cardiovascular 

disease and nerve damage by affecting gene expression (10). lncRNAs may also be involved in Alzheimer's 

disease pathogenesis. An excellent example of this is a lncRNA called BACE1-AS, which is transcribed from the 

complement strand of beta-secretase-1 and directly interferes with the regulation of beta-secretase gene 

expression, causing the aggregation of Aβ in Alzheimer's (11). However, the exact role of ncRNA in the onset 

and progress of Alzheimer's is not well clear and further research is needed. This review aimed to describe the 

role of ncRNA in the pathogenesis of Alzheimer's disease. 

 

Pathophysiology of Alzheimer's disease 

In 1907, Alois Alzheimer was confronted by a 51 years female person with quickly declining memory as well 

as mental disorders, who died four years later. The most distinctive and common lesions in the brain of a 

patient with Alzheimer's are senile plaques (SP) and neurofibrillary tangles (NFT) (Figure 1) (12). NFTs are an 

important pathological symptom in the neuronal tissues of Alzheimer's disease. Neurons containing NFTs are 

characterized by dysfunction of the cytoskeleton and loss of microtubules and microtubule-associated proteins. 

Molecular mechanisms of cytoskeletal degradation and NFT development are relatively unclear. However, the 

processes of phosphorylation and dephosphorylation of proteins may contribute to the pathogenesis of this 

disorder. For example, tau peptide, a microtubule-associated protein, is highly hyperphosphorylated in the 

brains of Alzheimer's patients (13). Senile plaques are considered a pathological property of Alzheimer's disease 
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brain. These plaques are made of amyloid fibers composed of peptides of amyloid-beta (Aβ). These peptides are 

formed by the amyloid precursor protein (APP) cleavage. Genetic, in vitro, and in vivo observations show that 

the deposition of the peptides of Aβ in the brain is a key factor in Alzheimer's pathogenesis (14). Amyloid-beta 

peptides accumulate to soluble oligomers that act as activators of NMDAR endocytosis, neuroinflammation, 

incomplete neurogenesis, apoptosis, neuronal stress, synaptic dysfunction, lipid dysregulation, calcium over 

influx, oxidative damage, and mitochondrial dysfunction (15). 

 

 
Figure 1. The main pathological properties of Alzheimer’s disease. The two main features of Alzheimer's brain 

are the formation of beta-amyloid plaques and neurofibrillary tangles. 

 

Small non-coding RNAs 

There are different types of small non-coding RNAs (sncRNAs) that play many roles in the cell. Some are 

present in the spliceosome and some can contribute to the regulation of gene expression. Those sncRNAs 

involved in regulating gene expression can have a task in the progression of disorders, including 

neurodegenerative diseases. Among these, miRNAs have been further studied and identified, which can be 

considered biomarkers or tools for developing treatment strategies for these diseases (16). Major regulatory 

sncRNAs include miRNAs, siRNAs, and piRNAs, some of which are briefly described below. 

MiRNAs are created by the regulation of the gene expression within a cell. They are about 21 to 23 

nucleotides in size, transcribed through RNA Pol II, and are initially in the single-stranded RNA forms (pri-

miRNAs). This structure is then processed by the Drosha/DGCR8 complex in the nuclear space to form the pre-

miRNA hairpin structure. The last structure is transferred from the nuclear space to the cytosol by exportin-5 in 

an active transport way. Dicer, an RNase III, processes pre-miRNA into a mature double-stranded form in the 

cytoplasm. Mature miRNA is then detected, especially as a single strand, by the RISC complex. This complex 

directs miRNA to the target RNA and inhibits its expression or degrades it (Figure 2) (7). 
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Figure 2. miRNA processing and performance steps. After the pri-miRNA transcription by RNA Pol II, it is 

processed to pre-miRNA in the nucleus by the Drosha and DGCR8 complex. Then pre-miRNA is transported to 

the cytosol by Exportin 5 and then becomes mature miRNA by Dicer. Mature miRNAs and the RISC complex 

degrade or inhibit target mRNA expression. 

 

A specific miRNA in combination with the RISC complex can control the expression of many mRNAs. A 

large number of different microRNAs could also control a specific mRNA. These molecules are vastly present in 

the central nervous system and their presence varies at different times and in various regions of the brain (17). 

Examination of miRNA expression patterns in adult mice brains showed a specific set of miRNAs in the 

hippocampus and cerebral cortex (18). A closer look also showed that different patterns of miRNAs exist in 

various kinds of neurons and even various parts of the cell. For example, miRNAs such as miR-137-5p, miR-7-

5p, miR-29a-3p, miR-318-3p, miR-322-5p, miR-339-5p and miR-200c-3p were observed in synapses (19). In the 

distal axons, miRNAs such as miR-221-3p, miR-204-5p and miR-16-5p were found (20). The specific pattern of 

the presence of miRNAs indicates their role in regulating the function of neurons. In other words, they can 

control vital pathways for proper brain function such as memory and learning, neuronal plasticity, synaptic 

function, neurogenesis, and brain growth (17). Some studies have shown that some miRNAs, such as 106b-

5p/25-3p, miR-106a-5p/363-3p, and miR-17-5p/92-3p, have a main role in cortical growth (21, 22). One of the 

most plentiful miRNAs in the brain is miR-124-3p, which regulates axon growth in the retinal ganglion cells (23) 

and neurogenesis (24). A specific neuronal miRNA called miR-9-5p results in the proliferation and 

determination of the fate of neuronal progenitor cells (24, 25). MiR-9-5p also regulates neural migration and 

axonal growth (26, 27). In addition, miR-125-5p and Let-7b-5p have the main role in regulating astrocyte 

differentiation (28). But miR-138-5p and miR-338-5p have a chief role in the differentiation of oligodendrocytes 

(29, 30). 

Small interfering RNAs, or siRNAs, were initially found in plants by recognizing their role as double-

stranded RNAs in suppressing gene expression. The existence of such a mechanism was later confirmed in 
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mammals. The biogenesis mechanism of endogenous siRNAs is similar to miRNAs derived from dsRNA and 

processed in the cytosol by Dicer. This dsRNA binds to the RISC and AGO2 complexes, leaving the sense strand 

and maintaining only the antisense strand. This single-stranded RNA is directed to the target mRNA (17). The 

function of siRNAs is similar to that of miRNAs, but their mechanism of action is different. Just as siRNA 

sequences should exactly complement the target mRNA sequence, miRNAs can target multiple mRNAs (31). 

siRNAs are used as a molecular tool to inhibit gene expression under in vivo or in vitro conditions. Their role in 

controlling the expression of mammalian genes is still unclear. Additional researches are required to 

understand the role of these sncRNAs (17). 

Piwi-associated RNAs, or piRNAs, are a group of sncRNAs that are about 24-30 nucleotides in length and 

have been shown to have an essential role in germ cells. The sequence of piRNAs between different species is 

not conserved. In addition, the mechanism of their synthesis in the cell is completely different from the previous 

two types. piRNAs are not initially synthesized as double-strands and don’t need a Dicer molecule in their 

processing. piRNAs are also encoded from the repetitive intergenic elements such as transposable sequences as 

a large single-stranded precursor by polymerase II (17, 32). Two main mechanisms for piRNAs are known. 1- 

Primary biogenesis, which exists in both somatic cells such as neurons and germ cells; Secondary cycle or ping 

pong in which AGO3 binds to the piRNA antisense strand and targets the mobile elements that turn them 

silent. In addition, piRNAs are involved in sustaining genomic integrity, mRNA stability, and regulation of 

epigenetic processes (33-35). 

 

Long non-coding RNAs 

Long non-coding RNAs, or lncRNAs, are at least 200 nucleotides long and are usually generated by RNA Pol 

II or III. These ncRNAs are too structurally similar to mRNAs because they have a poly-A tail at the 3’UTR and 

a cap at the 5'UTR. They can also have alternative splicing, but lncRNAs are shorter than mRNAs and have less 

expression but show a higher tissue-specific expression pattern (36). LncRNAs are classified in suoirav ways, 

including processing methods, their situational association with coding genes, and different nucleotide 

elements on the gene. They can be divided into four categories. 1- sense-intronic RNAs; 2- Long, non-coding 

RNA; 3- bidirectional RNAs; and 4- natural antisense transcripts (17).  

The placement of various RNAs in different cell parts can be considered a regulatory mechanism. LncRNAs 

are less present in the nucleus than in other cellular organelles (37). LncRNAs in the nucleus are mostly found 

in paraspeckles, chromatin speckles, and nucleoli. The placement of LncRNAs in the cytoplasm is found in 

ribosomes, mitochondria, extracellular membranes, and exosomes. The placement patterns of lncRNAs are not 

unique and are commonly seen in various organelles and cell sections. The expression of this type of RNA is 

different in various tissues In other words, it is tissue-specific with a high expression in the central nervous 

system and its expression is controlled by age and position (17). Gene expression researches display that many 

lncRNAs have unique properties with respect to age and region of expression including the hippocampus, 

cerebellum, and cortex (38, 39). Also, these types of RNAs have higher expression specificity than the coding 

genes and determine the identity of the cell (40). The transcriptional location of lncRNAs on the genome affects 

their regulatory potentials. Many lncRNAs can impact the expression of adjacent genes, and sometimes the 

expression of genes is co-regulated (41). The co-regulation process occurs through the physical interactions of 

transcription machines and coding genes or chromatin remodeling (42). In addition to the cis-regulatory effect, 

lncRNAs can also regulate gene expression via trans. For example, they can alter chromatin forms at non-

transcription sites or regulate the organization and structure of the nucleus. They can also regulate other RNA 

molecules and proteins (43). 

Also, lncRNAs in the nucleus can be involved in gene silencing, RNA processing, translation, mRNA 

degradation, etc. (44). The mechanisms of the role of lncRNA in regulating gene expression are not well 

understood and more studies are required to comprehend it. These types of RNAs are associated with a large 
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number of pathological features and their expression level varies in disease conditions. Recently, the lncRNAs 

role in Alzheimer's has been highlighted (17). 

 

The role of miRNA in the Alzheimer’s pathogenesis  

Evidence suggests that altering the miRNA pattern may alter the Alzheimer's disease risk. Some miRNAs 

contributed to regulating the gene expression involved in Alzheimer's, including BACE1 and APP. These 

alterations in the miRNAs profile are observed in Alzheimer’s brain and cerebrospinal fluid and blood (45, 46). 

miRNAs are tested in vitro, in vivo, after-death Alzheimer's brain tissue, cerebrospinal fluid, and blood of 

Alzheimer's people. The level of most miRNAs in the Alzheimer's brain decreases. One report found that some 

miRNAs, including miR-219, miR-132, miR-128, miR-125b, and miR-124a, are found in large amounts in the 

fetal hippocampus, with major changes in the levels of some specific miRNAs in the Alzheimer's brain. In that 

study, miR-128 and miR-125b levels in Alzheimer's brain increased (47). Another study found that the levels of 

miR-107 were decreased in Alzheimer's. This miRNA may involve in the progression of Alzheimer's by 

interfering with the regulation of BACE1 gene expression (48). Some other researches show that in Alzheimer's 

brain the expression of some members of the miR-29a family decreased and consequently, the level of BACE1 

increased (49, 50). In another study, the role of miRNAs in controlling APP gene expression was investigated. In 

that study, miR-106b, miR-17-5p, and miR-20a control the APP gene expression in the neuronal cell line. A 

substantial association was found between the aforementioned miRNAs and APP during neuronal 

differentiation and brain development. Due to the reduced expression of miR-106b in the Alzheimer's brain, it 

was proposed that these microRNAs contributed to the progress of Alzheimer's disease by influencing APP 

expression (51). The expression of miR-101 reduces in the cortex of the Alzheimer's brain, of course, the 

expression of some miRNAs, including miR-128 and miR-125b, increases in the Alzheimer's brain, which 

indicates their positive regulation. The miR-146b and miR-146a are also negatively and positively regulated in 

Alzheimer's. The expression of miR-9 can also increase or decrease in Alzheimer's. miR-219, miR-132, and miR-

26a were also not observed in Alzheimer's disease (46). 

It is very difficult to check for changes in the profile of miRNAs due to access to the living brain. But many 

studies can be done on samples such as blood or cerebrospinal fluid because these samples are relatively easy to 

access. miRNA profiles in Alzheimer's were altered in peripheral blood mononuclear cells. The expression of 

these miRNAs may be different in Alzheimer's patients carrying one or two APOE4 alleles (52). Also, the miR-

590-3p expression in the monocytes of the analyzed Alzheimer's patients was reduced compared to the control 

subjects (53). miR-138 is abundant in the brain and is placed within dendritic branches and controls the size of 

dendrites of neurons in the hippocampus of rats (54). In Alzheimer's, MiR-15b is reduced in cerebrospinal fluid 

but not in the brain. In addition, studies show that miR-181c is reduced in Alzheimer's cerebrospinal fluid (45, 

46). 

Animal models of mice are commonly used for Alzheimer's studies. There are 1,184 known microRNAs in 

the genome of a mouse, 448 of them are expressed in the hippocampus, 23 of which are vastly expressed in the 

hippocampus and form about 83% of the total hippocampal miRNAs (55). It has been shown that miR-34c may 

be a biomarker for the onset of cognitive impairment in AD, and targeting this miRNA may be an appropriate 

treatment strategy (55). One study found that there was a decrease in the correlation between levels of mRNA 

and protein of the β-amyloid precursor protein-converting enzyme (BACE1) in the hippocampus of Alzheimer's 

mice. Subsequent studies also showed that miR-328 and miR-298 have binding sites downstream of BACE1 and 

could have regulatory effects on the expression of this protein in neurons in vitro (56). Pathological changes in 

the brain in Alzheimer's conditions are not completely reproducible in mice because there are differences 

between species in the severity and nature of Alzheimer's. In patients with AD, they show a large decrease in 

the cholinergic neurotransmitter system, the formation of NFTs, and a massive loss of neurons. However, fewer 

neuropathological changes are observed in APP transgenic mouse models (56). One study showed that miR-101 

significantly regulates APP expression by affecting a control region in 3'-UTR and that direct transfer of miR-101 
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to HeLa cells reduces APP expression in humans (57). However, studies show that changes in the profile of 

miRNAs are observed in the progression of Alzheimer's disease. But more investigations are needed to 

determine the role of miRNAs in the pathophysiology of the disease. 

 

lncRNAs contributed to the Alzheimer’s pathogenesis  

There are large numbers of lncRNAs in the human genome, about half of which are expressed in the brain. 

Disrupted expression of lncRNAs can be associated with some neurological disorders. The expression of many 

lncRNAs in 3xTg-AD mice was reported to be different from the control group (58, 59). BACE1-AS as a lncRNA 

has a role in Alzheimer's. BACE1-AS and BACE1 mRNAs are transcribed at the same location on human 

chromosome 11. The mRNA of BACE1 is generated from the sense strand and BACE1-AS mRNA is transcribed 

from the antisense strand. These two transcripts can complement each other and create a stable two-strand 

structure. This transcript is increased in the Alzheimer's brain compared to the control group (60). qPCR 

assessment revealed that the transcripts of BACE1-AS are more plentiful in the glial cells, the source of 

production of Aβ, rather than HCN1A cortical neurons. Also, increased BACE1-AS expression leads to 

increased BACE1 expression and beta-secretase regulation, which may explain the role of BACE1-AS in 

Alzheimer's pathology. In addition, the RNase protection assay showed that BACE1-AS and BACE1 could form 

a stable duplex to protect against destruction (60-62). Also, a study revealed that knockdown of BACE1-AS in 

an Alzheimer's mouse model could modulate beta-amyloid-related neurogenesis in the hippocampus (63). 

One factor that decreases aging or Alzheimer's brain is the glial cell-derived neurotrophic factor or GDNF. 

The two non-coding transcripts, GDNFOS1 and GDNFOS2, are the GDNF complementary sequences, and their 

impaired expression could be involved in the progress of Alzheimer's (64, 65). BC200 lncRNA could regulate the 

gene expression in the level translation. BC200 levels decrease in normal aging in the cerebral cortex. But its 

expression in Alzheimer's brains increases (66). Also, single nucleotide polymorphisms can be correlated with 

changes in the risk of some diseases. Studies show that rs1333049, rs1063192, and rs3217992 polymorphisms in a 

lncRNA called ANRIL or CDKN2B-AS are associated with pathological features such as Alzheimer's, 

cardiovascular disease, and diabetes type 2 (62, 67, 68). In addition, one study found that 84 lncRNAs decreased 

in Alzheimer's, while 24 lncRNAs increased in Alzheimer's (69). n336934 is another lncRNA present in the 

mitochondrial genome associated with cholesterol homeostasis and plays a vital role in the formation of Aβ in 

Alzheimer's disease (70). Because mitochondria are inherited exclusively from the mother in humans, this 

mitochondrial lncRNA may be involved in maternal hereditary Alzheimer's (71, 73). 

 Nomerous lncRNAs have been recognized in which altered expression or mutations of them are involved in 

Alzheimer's pathogenesis. However, the exact mechanisms of involvement of lncRNAs in different stages of the 

disease have not been identified and further studies are needed. Accurate detection of the share of lncRNAs in 

Alzheimer's can identify them as therapeutic targets or biomarkers of Alzheimer's disease. 

 

Conclusion 

Alzheimer's disease is a progressive brain disorder that causes dementia in old age. Many environmental 

and genetic factors are involved in disease pathogenesis. Alterations in genes involved in the processing of beta-

amyloid plaques or neurofibrillary tangles can increase the disease’s risk disease’s risk. Post-transcriptional 

mechanisms involved in gene expression regulation can also play a role in Alzheimer's pathogenesis. Non-

coding RNAs, which commonly include miRNAs and lncRNAs, can play a role in regulating gene expression. 

miRNAs by interaction with 3′-UTR in target mRNAs can cause them to be silenced or even degraded. lncRNAs 

can also form stable complexes with mRNAs and affect their expression. It is very difficult to study these 

molecules in the brains of people with Alzheimer's because access to the living brain is usually difficult, but 

examining them in the blood and cerebrospinal fluid can be easier. Today, the diagnosis of Alzheimer's is made 

when severe brain damage has occurred, which poses a challenge in treating or preventing the progression of 
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the disease. Given that the expression profiles of many genes occur before the clinical signs of Alzheimer's, early 

detection of these changes can be a promising approach to providing treatment strategies. 
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