Description of schizophrenia and related mechanisms: oxidative stress and role of ketamine against N-methyl-D-aspartate receptor

Document Type : Review Paper

Authors

1 Department of Orthopedic Surgeon, Shahid Beheshti University of medical sciences, Tehran, Iran

2 Department of Psychology, Faculty of Social Sciences, Razi University, Kermanshah, Iran

3 Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran

Abstract

Schizophrenia is a very violent mental illness with an occurrence of less than 1% in the global population. The disease mainly happens in early adulthood and late adolescence, at which time the symptoms and psychological features of the disease appear and often lead to a difficult and painful life for both the patient and his family. This disorder can be impressed by genetic and environmental factors. Environmental factors including infections, stress, nutrition, etc. can change the risk of developing this disease. Genetic factors such as genes involved in neurological processes can also have a main role in the disease development. Glutamate receptors are accountable for glutamate-mediated postsynaptic stimulation of nerve cells and are essential for learning, memory development, neuron communication, anxiety, pain perception, and regulation of brain function. However, hyperactivity of NMDA receptors is effective in the development of schizophrenia. Non-competitive antagonists or open channels of N-methyl-D-aspartate receptors or NMDARs including low-dose phencyclidine and ketamine lead to schizophrenia-like symptoms and results in GABA impairment. Levels of glutamate in the hippocampus are also increased by ketamine, which corresponds to an increase in glutamate in schizophrenia. This study aimed to description of schizophrenia and related mechanisms by focus on the oxidative stress and role of ketamine against NMDA receptor.

Graphical Abstract

Description of schizophrenia and related mechanisms: oxidative stress and role of ketamine against N-methyl-D-aspartate receptor

Highlights

  • Schizophrenia is considered a debilitating and complex mental disease.
  • Environmental and genetic factors can affect the development of this disease.
  • Oxidative stress and impaired glutaminergic receptors involved in schizophrenia pathogenesis.
  • Ketamine contributes to the development of schizophrenia symptoms via NMDA receptors.

Keywords

Main Subjects


1. Abdallah CG, Sanacora G, Duman RS, Krystal JH. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Ann Rev Med 2015; 66: 509-523.
2. Aleman A, Kahn RS, Selten JP. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch General Psychiatry 2003; 60(6): 565-571.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
4. Bilder RM, Volavka J, ál Czobor P, Malhotra AK, Kennedy JL, Ni X, Goldman RS, Hoptman MJ, Sheitman B, Lindenmayer JP, Citrome L. Neurocognitive correlates of the COMT Val158Met polymorphism in chronic schizophrenia. Biol Psychiatry 2002; 52(7): 701-707.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Bitanihirwe BK, Woo TU. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2011; 35(3): 878-893.
6. Boskovic M, Vovk T, Kores Plesnicar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol 2011; 9(2): 301-312.
7. Boydell J. Risk factors for schizophrenia. Exp Rev Neurotherap 2001; 1(2): 183-191.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
8. Cariaga-Martinez A, Alelú-Paz R. Rethinking the epigenetic framework to unravel the molecular pathology of schizophrenia. Int J Mole Sci 2017; 18(4): 790.
9. Chowdari KV, Bamne MN, Nimgaonkar VL. Genetic association studies of antioxidant pathway genes and schizophrenia. Antioxid Redox Signal 2011; 15(7): 2037-2045.
10. Clarke MC, Harley M, Cannon M. The role of obstetric events in schizophrenia. Schizophr Bull 2006; 32(1): 3-8.
11. Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophrenia Bull 2012; 38(5): 920-926.
12. De Luca V, Muglia P, Masellis M, Dalton EJ, Wong GW, Kennedy JL. Polymorphisms in glutamate decarboxylase genes: analysis in schizophrenia. Psychiatric Gen 2004; 14(1): 39-42.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
13. Dick DM. Gene-environment interaction in psychological traits and disorders. Ann Rev Clin Psychol 2011; 7: 383-409.
14. Domino EF, Warner DS. Taming the ketamine tiger. J Am Soc Anesthesiol 2010; 113(3): 678-684.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sinica 2009; 30(4): 379-387.
16. Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, Almonte A, Murray E, Mosley C, Barber J, French A. Subunit‐specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol 2007; 581(1): 107-128.
17. Dvir Y, Denietolis B, Frazier JA. Childhood trauma and psychosis. Child Adolescent Psychiat Clin 2013; 22(4): 629-641.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
18. Escudero I, Johnstone M. Genetics of schizophrenia. Curr Psychiatry Rep 2014; 16(11): 1-6.
19. Gejman PV, Sanders AR, Duan J. The role of genetics in the etiology of schizophrenia. Psychiatric Clin 2010; 33(1): 35-66.
20. Hartvig P, Valtysson J, Lindner KJ, Kristensen J, Karlsten R, Gustafsson LL, Persson J, Svensson JO, Øye I, Antoni G, Westerberg G. Central nervous system effects of subdissociative doses of (S)‐ketamine are related to plasma and brain concentrations measured with positron emission tomography in healthy volunteers. Clin Pharmacol Therap 1995; 58(2): 165-173.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
21. Höflich A, Hahn A, Küblböck M, Kranz GS, Vanicek T, Windischberger C, Saria A, Kasper S, Winkler D, Lanzenberger R. Ketamine-induced modulation of the thalamo-cortical network in healthy volunteers as a model for schizophrenia. Int J Neuropsychopharmacol 2015; 18(9): 1-11.
22. Jääskeläinen E, Juola P, Hirvonen N, McGrath JJ, Saha S, Isohanni M, Veijola J, Miettunen J. A systematic review and meta-analysis of recovery in schizophrenia. Schizophrenia Bull 2013; 39(6): 1296-1306.
23. Janoutová J, Janácková P, Sery O, Zeman T, Ambroz P, Kovalová M, Varechova K, Hosák L, Jirik V, Janout V. Epidemiology and risk factors of schizophrenia. Neuroendocrinol Lett 2016; 37(1): 1-8.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
25. Juchnowicz D, Dzikowski M, Rog J, Waszkiewicz N, Zalewska A, Maciejczyk M, Karakuła-Juchnowicz H. Oxidative stress biomarkers as a predictor of stage illness and clinical course of schizophrenia. Front Psychiatry 2021; 12.
26. Kotermanski SE, Wood JT, Johnson JW. Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J Physiol 2009; 587(19): 4589-4604.
27. Kozlowska K, Walker P, McLean L, Carrive P. Fear and the Defense Cascade: Clinical Implications and Management. Harv Rev Psychiatry 2015; 23(4), 263-287.
28. Kurdi MS, Theerth KA, Deva RS. Ketamine: Current applications in anesthesia, pain, and critical care. Anesthesia Essays Res 2014; 8(3): 283-290.
29. Le Foll B, Ng E, Di Ciano P, Trigo JM. Psychiatric disorders as vulnerability factors for nicotine addiction: what have we learned from animal models?. Neuropharmacol Nicotine Depend 2015; 155-170.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
30. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329(5994): 959-964.
31. Li P, L Snyder G, E Vanover K. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Topics Med Chem 2016; 16(29): 3385-3403.
32. Lu Z, Wen T, Wang Y, Kan W, Xun G. Peripheral non-enzymatic antioxidants in patients with schizophrenia: a case-control study. BMC Psychiatry 2020; 20(1): 1-9.
33. MacDonald JF, Miljkovic Z, Pennefather P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol 1987; 58(2): 251-266.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
34. Maj C, Minelli A, Giacopuzzi E, Sacchetti E, Gennarelli M. The role of metabotropic glutamate receptor genes in schizophrenia. Curr Neuropharmacol 2016; 14(5): 540-550.
35. Martínez-Ortega JM, Carretero MD, Gutiérrez-Rojas L, Díaz-Atienza F, Jurado D, Gurpegui M. Winter birth excess in schizophrenia and in non-schizophrenic psychosis: Sex and birth-cohort differences. Prog Neuro-Psychopharmacol Biological Psychiatry 2011; 35(7): 1780-1784.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
36. Matheson SL, Shepherd AM, Laurens KR, Carr VJ. A systematic meta-review grading the evidence for non-genetic risk factors and putative antecedents of schizophrenia. Schizophrenia Res 2011; 133(1-3): 133-142.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
37. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30(1): 67-76.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
38. McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P, Burne TH, Norgaard-Pedersen B, Hougaard DM, Mortensen PB. Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study. Arch General Psychiatry 2010; 67(9): 889-894.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
40. Modinos G, Iyegbe C, Prata D, Rivera M, Kempton MJ, Valmaggia LR, Sham PC, Van Os J, McGuire P. Molecular genetic gene–environment studies using candidate genes in schizophrenia: a systematic review. Schizophrenia Res 2013; 150(2-3): 356-365.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci 2015; 9: 372.
42. Murray AJ, Rogers JC, Katshu MZ, Liddle PF, Upthegrove R. Oxidative stress and the pathophysiology and symptom profile of schizophrenia spectrum disorders. Front Psychiatry 2021: 1235.
43. Newcomer JW, Farber NB, Olney JW. NMDA receptor function, memory, and brain aging. Dialogues Clin Neurosci 2000; 2(3): 219-232.
44. Palmer BA, Pankratz VS, Bostwick JM. The lifetime risk of suicide in schizophrenia: a reexamination. Arch General Psychiatry 2005; 62(3): 247-253.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
45. Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. Pharm Therap 2014; 39(9): 638-645.
46. Paul-Samojedny M, Kowalczyk M, Suchanek R, Owczarek A, Fila-Danilow A, Szczygiel A, Kowalski J. Functional polymorphism in the interleukin-6 and interleukin-10 genes in patients with paranoid schizophrenia—a case-control study. J Mole Neurosci 2010; 42(1): 112-119.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
47. Paul-Samojedny M, Owczarek A, Suchanek R, Kowalczyk M, Fila-Danilow A, Borkowska P, Kucia K, Kowalski J. Association study of interferon gamma (IFN-γ)+ 874T/A gene polymorphism in patients with paranoid schizophrenia. J Mole Neurosci 2011; 43(3): 309-315.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
48. Pełka-Wysiecka J, Wroński M, Jasiewicz A, Grzywacz A, Tybura P, Kucharska-Mazur J, Bieńkowski P, Samochowiec J. BDNF rs 6265 polymorphism and COMT rs 4680 polymorphism in deficit schizophrenia in Polish sample. Pharmacol Rep 2013; 65(5): 1185-1193.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
49. Perälä J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsä E, Pirkola S, Partonen T, Tuulio-Henriksson A, Hintikka J, Kieseppä T, Härkänen T. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch General Psychiatry 2007; 64(1): 19-28.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
50. Punchaichira TJ, Kukshal P, Bhatia T, Deshpande SN, Thelma BK. The effect of rs1076560 (DRD2) and rs4680 (COMT) on tardive dyskinesia and cognition in schizophrenia subjects. Psychiatric Gen 2020; 30(5): 125-135.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
51. Raffa M, Atig F, Mhalla A, Kerkeni A, Mechri A. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 2011; 11(1): 1-7.
52. Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomole Therap 2012; 20(1): 1-18.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
54. Sorrenti V, Cecchetto C, Maschietto M, Fortinguerra S, Buriani A, Vassanelli S. Understanding the effects of anesthesia on cortical electrophysiological recordings: a scoping review. Int J Mole Sci 2021; 22(3): 1286.
55. Szkultecka-Dębek M, Walczak J, Augustyńska J, Miernik K, Stelmachowski J, Pieniążek I, Obrzut G, Pogroszewska A, Paulić G, Damir M, Antolić S. Epidemiology and treatment guidelines of negative symptoms in schizo-phrenia in central and eastern Europe: a literature review. Clin Pract Epidemiol Mental Health 2015; 11: 158-165.
56. Szöke A, Charpeaud T, Galliot AM, Vilain J, Richard JR, Leboyer M, Llorca PM, Schürhoff F. Rural-urban variation in incidence of psychosis in France: a prospective epidemiologic study in two contrasted catchment areas. BMC Psychiatry 2014; 14(1): 1-7.
57. Takei N, Murray RM, Sham P, O'Callaghan E. Schizophrenia risk for women from in utero exposure to influenza. Am J Psychiatry 1995; 152(1): 150-151.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
58. Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia,“just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophrenia Res 2008; 102(1-3): 1-8.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
60. Tosic M, Ott J, Barral S, Bovet P, Deppen P, Gheorghita F, Matthey ML, Parnas J, Preisig M, Saraga M, Solida A. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene. Am J Human Gen 2006; 79(3): 586-592.
61. Vigod SN, Kurdyak PA, Dennis CL, Gruneir A, Newman A, Seeman MV, Rochon PA, Anderson GM, Grigoriadis S, Ray JG. Maternal and newborn outcomes among women with schizophrenia: a retrospective population‐based cohort study. Int J Obstet Gynaecol 2014; 121(5): 566-574.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
62. Vijayan NN, Bhaskaran S, Koshy LV, Natarajan C, Srinivas L, Nair CM, Allencherry PM, Banerjee M. Association of dopamine receptor polymorphisms with schizophrenia and antipsychotic response in a South Indian population. Behav Brain Func 2007; 3(1): 1-2.
63. Yang J, Si T, Ling Y, Ruan Y, Han Y, Wang X, Zhou M, Zhang D, Zhang H, Kong Q, Liu C. Association study between interleukin-1β gene (IL-1β) and schizophrenia. Life Sci 2003; 72(26): 3017-3021.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
64. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EF, Albuquerque EX, Thomas CJ, Zarate CA, Gould TD. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 2018; 70(3): 621-660.
65. Zhao X, Venkata SL, Moaddel R, Luckenbaugh DA, Brutsche NE, Ibrahim L, Zarate Jr CA, Mager DE, Wainer IW. Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment‐resistant bipolar depression. Br J Clin Pharmacol 2012; 74(2): 304-314.
66. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Trans 2014; 121(8): 799-817.
68. Zhao Q, Yu C, Jiang H, Lan B, Bais S. Vitexin Prevents Vascular Oxidative Stress in Rats Treated with Atherogenic Diet. Lat Am J Pharm 2021; 40(11): 2693-2701.