The physiology of vitamin D and its involvement in cardiovascular diseases

Document Type : Review Paper

Authors

1 Department of Medical Cardiology, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Türkiye

2 Department of Sports Science and Physical Education, Faculty of Arts and Humanities, Punjab University, Lahore, Pakistan

3 Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil, Iraq

10.22034/CAJMPSI.2022.04.02

Abstract

Cardiovascular diseases (CVD) is a leading reason of global mortality. The most common causes of CVD-related deaths are ischemic heart disease, congestive heart failure, and stroke. Cardiac ischemia is correlated with coronary artery stenosis, which disrupts blood flow to the muscle of heart, also recognized as coronary artery disease. A stroke is also caused by a sudden blockage of blood flow to the brain or a rupture of blood vessels, both of which block blood flow to the brain tissue and deprive the brain of glucose and oxygen. Cardiovascular diseases can be affected by ethnicity, gender, lifestyle, genetic factors, and so on. Vitamin D, now known as a neurosteroid, have a main role in the body's physiological activities. Vitamin D is a fat-soluble vitamin that could be synthesized in the skin and act as a hormone. Vitamin D deficiency increases the susceptibility to vascular disease and ischemic stroke in people. Vitamin D may have a main role in cardiovascular disease by interfering with various mechanisms such as inflammation, thrombosis, renin-angiotensin system, etc. The aim of this study was to describe the important cardiovascular diseases and the physiology of vitamin D and its role in cardiovascular diseases.

Graphical Abstract

The physiology of vitamin D and its involvement in cardiovascular diseases

Highlights

  • Cardiovascular disease is a leading reason for global mortality.
  • Cardiovascular diseases can be influenced by environmental factors and genetic factors.
  • Vitamin D deficiency increases the risk of cardiovascular disease.

Keywords

Main Subjects


1. Thiriet M. Cardiovascular disease: An introduction. Vasculopathies 2018; 8: 1-90.
2. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am College Cardiol 2020; 76(25): 2982-3021.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
3. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prevent Med 2014; 5(8): 927-946.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
4. Guzik A, Bushnell C. Stroke epidemiology and risk factor management. CONTINUUM: Lifelong Learn Neurol 2017; 23(1): 15-39.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
5. Azarpazhooh MR, Mobarra N, Parizadeh SM, Tavallaie S, Bagheri M, Rahsepar AA, Ghayour-Mobarhan M, Sahebkar A, Ferns GA. Serum high-sensitivity C-reactive protein and heat shock protein 27 antibody titers in patients with stroke and 6-month prognosis. Angiology 2010; 61(6): 607-612.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
6. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S, An Y, Qin C, Zhao RC. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 2011; 1367: 103-113.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Randolph SA. Ischemic stroke. Workplace Health Safe 2016; 64(9): 444.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
8. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 2008; 55(3): 310-318.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
9. Moretti R, Morelli ME, Caruso P. Vitamin D in neurological diseases: a rationale for a pathogenic impact. Int J Mole Sci 2018; 19(8): 2245.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
11. Heusch G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what?. Am J Physiol Heart Circulat Physiol 2019; 316(6): H1439-H1446.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
12. Severino P, D’Amato A, Pucci M, Infusino F, Adamo F, Birtolo LI, Netti L, Montefusco G, Chimenti C, Lavalle C, Maestrini V. Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int J Mole Sci 2020; 21(21): 8118-8121.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
14. Epstein FH. Cardiovascular disease epidemiology: a journey from the past into the future. Circulation 1996; 93(9): 1755-1764.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Tunstall-Pedoe H, Kuulasmaa K, Mähönen M, Tolonen H, Ruokokoski E, Amouyel P. Contribution of trends in survival and coronar y-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA Project populations. Lancet 1999; 353(9164): 1547-1557.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
16. Worth RM, Kato H, Rhoads GG, Kagan A, Syme SL. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: mortality. Am J Epidemiol 1975; 102(6): 481-490.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed        
17. Bhatnagar P, Wickramasinghe K, Williams J, Rayner M, Townsend N. The epidemiology of cardiovascular disease in the UK 2014. Heart 2015; 101(15): 1182-1189.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
18. Chadha SL, Radhakrishnan S, Ramachandran K, Kaul U, Gopinath N. Epidemiological study of coronary heart disease in urban population of Delhi. Ind J Med Res 1990; 92: 424-430.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
19. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 2019; 234(10): 16812-16823.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
20. Ibanez B, Vilahur G, Badimon JJ. Plaque progression and regression in atherothrombosis. J Thromb Haemostasis 2007; 5: 292-299.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
21. Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, Bobik A. Smad expression in human atherosclerotic lesions: evidence for impaired TGF-β/Smad signaling in smooth muscle cells of fibrofatty lesions. Arteriosclerosis Thrombosis Vascular Biol 2004; 24(8): 1391-1396.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
22. Lowe SW, Sherr CJ. Tumor suppression by Ink4a–Arf: progress and puzzles. Curr Opinion Gen Develop 2003; 13(1): 77-83.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
23. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG, Frazer KA. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 2011; 470(7333): 264-268.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
24. Pilbrow AP, Folkersen L, Pearson JF, Brown CM, McNoe L, Wang NM, Sweet WE, Tang WW, Black MA, Troughton RW, Richards AM. The chromosome 9p21. 3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues. PLoS One 2012; 7(6): e39574.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
25. Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mole Gen 2008; 17(6): 806-814.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
26. Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, Calandra S, Bertolini S, Cossu F, Grishin N, Barnes R. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001; 292(5520): 1394-1398.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
27. Pajukanta P, Lilja HE, Sinsheimer JS, Cantor RM, Lusis AJ, Gentile M, Duan XJ, Soro-Paavonen A, Naukkarinen J, Saarela J, Laakso M. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Gen 2004; 36(4): 371-376.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat Gen 2002; 32(4): 650-654.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
29. Archacki SR, Angheloiu G, Tian XL, Tan FL, DiPaola N, Shen GQ, Moravec C, Ellis S, Topol EJ, Wang Q. Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiolog Genom 2003; 15(1): 65-74.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
30. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mole Cell Biol 2008; 9(3): 231-241.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
31. Zhu J, Shen W, Gao L, Gu H, Shen S, Wang Y, Wu H, Guo J. PI3K/Akt-independent negative regulation of JNK signaling by MKP-7 after cerebral ischemia in rat hippocampus. BMC Neurosci 2013; 14(1): 1-1.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
32. Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33(1): 85-104.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
33. Smith WS. Pathophysiology of focal cerebral ischemia: a therapeutic perspective. J Vasc Intervent Radiol 2004; 15(1): S3-S12.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
34. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J 2003; 44(2): 85-95.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
35. Berezowski V, Fukuda AM, Cecchelli R, Badaut J. Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology. Int J Cell Biol 2012; 2012: 176287.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
36. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. 1993 Dec; 24(12): 2002-2008.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
38. Braeuninger S, Kleinschnitz C. Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Trans Stroke Med 2009; 1(1): 1-1.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
39. Gorelick PB. The global burden of stroke: persistent and disabling. Lancet Neurol 2019; 18(5): 417-418.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
40. GBD 2016 Lifetime Risk of Stroke Collaborators. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. New England J Med 2018; 379(25): 2429-2437.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
41. Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, Pandian J, Feigin V. World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int J Stroke Official J Int Stroke Soc 2019; 14: 806-817.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
42. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, Barker-Collo S, Moran AE, Sacco RL, Truelsen T, Davis S. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology 2015; 45(3): 161-176.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
43. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson LM, Truelsen T, O'Donnell M. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Global Health 2013; 1(5): e259-e281.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
44. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 2019; 139(10): e56-e28.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
45. Krishnamurthi RV, Moran AE, Feigin VL, Barker-Collo S, Norrving B, Mensah GA, Taylor S, Naghavi M, Forouzanfar MH, Nguyen G, Johnson CO. Stroke prevalence, mortality and disability-adjusted life years in adults aged 20-64 years in 1990-2013: data from the global burden of disease 2013 study. Neuroepidemiology 2015; 45(3): 190-202.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res 2017; 120(3): 439-448.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
47. Lindgren A. Stroke genetics: a review and update. J Stroke 2014; 16(3): 114-123
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
48. Hassan A, Markus HS. Genetics and ischaemic stroke. Brain 2000; 123(9): 1784-812.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
49. Dichgans M, Pulit SL, Rosand J. Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol 2019; 18(6): 587-599.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
50. O'donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ, Mondo C. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010; 376(9735): 112-123.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
51. Bang OY, Ovbiagele B, Kim JS. Nontraditional risk factors for ischemic stroke: an update. Stroke 2015; 46(12): 3571-3578.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
52. Shah AS, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, Langrish JP, Newby DE, Mills NL. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 2015; 350.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
53. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 2016; 96(1): 365-408.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
54. Lips P. Vitamin D physiology. Progress Biophys Mole Biol 2006; 92(1): 4-8.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed      
55. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW. Molecular mechanisms of vitamin D action. Calcified Tissue Int 2013; 92(2): 77-98.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
56. Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int J Mole Sci 2018; 19(9): 2663.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
57. Cashman KD, van den Heuvel EG, Schoemaker RJ, Prévéraud DP, Macdonald HM, Arcot J. 25-Hydroxyvitamin D as a biomarker of vitamin D status and its modeling to inform strategies for prevention of vitamin D deficiency within the population. Adv Nutr 2017; 8(6): 947-957.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
58. Van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab 2011; 25: 671-680.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
59. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor?. Arch Biochem Biophys 2012; 523(1): 123-133.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
60. McGrath J, Feron F, Eyles D, Mackay-Sim A. Vitamin D: the neglected neurosteroid?. TRENDS Neurosci 2001; 24(10): 570-571.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
61. Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460(1): 53-71.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
63. Chen J, Olivares-Navarrete R, Wang Y, Herman TR, Boyan BD, Schwartz Z. Protein-disulfide isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts. J Biol Chem 2010; 285: 37041-37050.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
64. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M. Multiple actions of steroid hormones—a focus on rapid, nongenomic effects. Pharmacol Rev 2000; 52(4): 513-556.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
65. Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mole Cell Endocrinol 2017; 453: 131-143.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
66. Cardus A, Panizo S, Encinas M, Dolcet X, Gallego C, Aldea M, Fernandez E, Valdivielso JM. 1, 25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis 2009; 204(1): 85-89.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
67. Chen Y, Liu W, Sun T, Huang Y, Wang Y, Deb DK, Yoon D, Kong J, Thadhani R, Li YC. 1, 25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting MicroRNA-155–SOCS1 in macrophages. J Immunol 2013; 190(7): 3687-3695.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
68. Helming L, Böse J, Ehrchen J, Schiebe S, Frahm T, Geffers R, Probst-Kepper M, Balling R, Lengeling A. 1α, 25-dihydroxyvitamin D3 is a potent suppressor of interferon γ–mediated macrophage activation. Blood 2005; 106(13): 4351-4358.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
69. Takeda M, Yamashita T, Sasaki N, Nakajima K, Kita T, Shinohara M, Ishida T, Hirata KI. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arteriosclerosis Thrombosis Vasc Biol 2010; 30(12): 2495-2503.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
70. Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, Li P, Tipping P, Bobik A, Toh BH. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation 2013; 127(9): 1028-1039.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed