Medicinal plants as a hopeful therapeutic approach against COVID-19 infection

Document Type : Review Paper

Authors

1 Department of Pharmacy, University of Napoli, Naples, Italy

2 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China

3 Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Biochemistry, Payame Noor University, Tehran, Iran

5 Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Türkiye

10.22034/CAJMPSI.2023.01.02

Abstract

The disease of COVID-19 is generated by the SARS-COV-2 virus and principally attacks the lung tissue. In addition, other tissues are also attacked by the virus. Reports have shown that the clinical symptoms of this disease vary from no sign to acute respiratory symptoms in the lungs and the occurrence of septic shock with an effect on the immune system in other organs. Although the number of patients is continuously increasing, there is still no approved drug for COVID-19. Currently, the treatment provided to injured people is usually based on symptoms. However, so far, various treatment methods have been proposed and used to solve this problem. One of the most important therapeutic methods for curing this disease is the use of drugs whose action is usually based on the inhibition mechanisms of enzymes of virus including RNA and DNA polymerase, glycosylation of viral protein, assembly of virus, etc., and includes antiviral, antimalarial, anti-inflammatory, anti-HIV, and corticosteroid drugs. Medicinal plants have fewer side effects than chemicals due to their natural origin. Today, medicinal plants are considered a valuable source of natural compounds for use in the production of antimicrobial and antioxidant drugs. Medicinal plants with certain properties, such as fighting the entrance of the coronavirus into the host cell and interfering with inflammatory reactions, can control the pathogenesis of COVID-19. Among these medicinal plants, we can mention hesperidin, saffron, and rosemary. The aim of this study is to introduce some effective medicinal plants in the COVID-19 treatment based on cellular and molecular mechanisms.

Graphical Abstract

Medicinal plants as a hopeful therapeutic approach against COVID-19 infection

Highlights

  • Virus of SARS-COV-2 results in COVID-19 disease and mainly attacks the lung tissue.
  • Medicinal plants can control COVID-19 by host cell entry prevention.
  • Medicinal plants can control the COVID-19 by interfering with inflammatory reactions.

Keywords

Main Subjects


1. Worobey M, Levy JI, Malpica Serrano L, Crits-Christoph A, Pekar JE, Goldstein SA, Rasmussen AL, Kraemer MU, Newman C, Koopmans MP, Suchard MA. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022; 377(6609): 951-959.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
2. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed 2020; 91(1): 157-160.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
3. Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus 2020; 12(3): e7423.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
4. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-286.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
5. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Inter Med 2020; 173(5): 362-367.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
6. Karimi A, Tabatabaei SR, Rajabnejad M, Pourmoghaddas Z, Rahimi H, Armin S, Ghanaie RM, Kadivar MR, Fahimzad SA, Sedighi I, Mirrahimi B. An algorithmic approach to diagnosis and treatment of coronavirus disease 2019 (COVID-19) in children: Iranian expert’s consensus statement. Arch Pediatric Infect Dis 2020; 8(2): 1-6.
7. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019; 9(11): 258.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
8. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25(22): 5243.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
9. Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res 2020; 284: 197989.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
10. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
11. Kandeil A, Mostafa A, Kutkat O, Moatasim Y, Al-Karmalawy AA, Rashad AA, Kayed AE, Kayed AE, El-Shesheny R, Kayali G, Ali MA. Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2. Pathogens 2021; 10(6): 758.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
12. Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med Hypotheses 2020; 144: 109957.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23(1): 3-20.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
16. Mantzourani C, Vasilakaki S, Gerogianni VE, Kokotos G. The discovery and development of transmembrane serine protease 2 (TMPRSS2) inhibitors as candidate drugs for the treatment of COVID-19. Expert Opin Drug Discov 2022; 17(3): 231-246.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
17. Ahmad I, Pawara R, Surana S, Patel H. The Repurposed ACE2 Inhibitors: SARS-CoV-2 Entry Blockers of Covid-19. Top Curr Chem 2021; 379(6): 40.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
18. Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants 2020; 9(8): 742.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
19. Zalpoor H, Bakhtiyari M, Shapourian H, Rostampour P, Tavakol C, Nabi-Afjadi M. Hesperetin as an anti-SARS-CoV-2 agent can inhibit COVID-19-associated cancer progression by suppressing intracellular signaling pathways. Inflammopharmacology 2022:1-7.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
20. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
21. Razak SIA, Anwar Hamzah MS, Yee FC, Kadir MRA, Nayan NHM. A review on medicinal properties of saffron toward major diseases. J Herbs Spices Med Plants 2017; 23(2): 98-116.
22. Mzabri I, Addi M, Berrichi A. Traditional and modern uses of saffron (Crocus sativus). Cosmetics 2019; 6(4): 63.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
25. Hashemi SA, Bathaie SZ, Mohagheghi MA. Crocetin and crocin decreased cholesterol and triglyceride content of both breast cancer tumors and cell lines. Avicenna J Phytomed 2020; 10(4): 384-397.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
26. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol 2022; 23(2): 186-193.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Marefati N, Ghorani V, Shakeri F, Boskabady M, Kianian F, Rezaee R, Boskabady MH. A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharm Biol 2021; 59(1): 287-302.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
28. Naimi M, Vlavcheski F, Shamshoum H, Tsiani E. Rosemary Extract as a Potential Anti-Hyperglycemic Agent: Current Evidence and Future Perspectives. Nutrients 2017; 9(9): 968.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
30. Shiravi A, Akbari A, Mohammadi Z, Khalilian M-S, Zeinalian A, Zeinalian M. Rosemary and its protective potencies against COVID-19 and other cytokine storm associated infections: A molecular review. Mediter J Nutr Metab 2021; 14(4): 401-416.
CrossRef    Google Scholar    full-text PDF    Mendeley       
31. Satou R, Penrose H, Navar LG. Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Curr Hypertens Rep 2018; 20(12): 100.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
32. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab 2004; 15(4): 166-169.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
33. Chakrabartty I, Mohanta YK, Nongbet A, Mohanta TK, Mahanta S, Das N, Saravanan M, Sharma N. Exploration of Lamiaceae in Cardio Vascular Diseases and Functional Foods: Medicine as Food and Food as Medicine. Front Pharmacol 2022; 13: 894814.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
34. Hu Y, Liu L, Lu X. Regulation of Angiotensin-Converting Enzyme 2: A Potential Target to Prevent COVID-19? Front Endocrinol 2021; 12: 725967.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
35. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, Hou C, Wang H, Liu J, Yang D, Xu Y. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24(1): 422.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
37. Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MM, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12: 637553.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
38. de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26(1): 1-22.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
39. Bernatoniene J, Kopustinskiene DM. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018; 23(4):965.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
40. Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci 2020; 21(5): 1744.
41. Chu C, Deng J, Man Y, Qu Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. Biomed Res Int 2017; 2017: 5615647.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
42. Chow HH, Hakim IA. Pharmacokinetic and chemoprevention studies on tea in humans. Pharmacol Res 2011; 64(2): 105-112.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
43. Anusiya G, Gowthama Prabu U, Yamini NV, Sivarajasekar N, Rambabu K, Bharath G, Banat F. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 2021; 12(2): 11239-11268.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
44. Zhao T, Li C, Wang S, Song X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules 2022; 27(12): 3909.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
45. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 2010; 501(1): 65-72.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
46. Fan FY, Sang LX, Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017; 22(3): 484.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
47. Babu PV, Liu D. Green tea catechins and cardiovascular health: an update. Curr Med Chem 2008; 15(18): 1840-1850.
48. Tallei T, Fatimawali F, Niode N, Idroes R, Zidan B, Mitra S, Çelik İ, Nainu F, Ağagündüz D, Bin Emran T, Capasso R. A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. Evid Based Complement Alternat Med 2021; 2021: 7170736.
49. Bhar A, Jain A, Das S. Natural therapeutics against SARS CoV2: the potentiality and challenges. Vegetos 2022; 1-10.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
50. Diniz LRL, Elshabrawy HA, Souza MTS, Duarte ABS, Datta S, de Sousa DP. Catechins: Therapeutic Perspectives in COVID-19-Associated Acute Kidney Injury. Molecules 2021; 26(19): 5951.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
51. Du A, Zheng R, Disoma C, Li S, Chen Z, Li S, Liu P, Zhou Y, Shen Y, Liu S, Zhang Y. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol 2021; 176: 1-12.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
52. Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 2021; 85: 153286.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central