Vitamins and male infertility: role of various vitamins versus oxidative stress

Document Type : Review Paper

Authors

1 Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan

2 Health Care Study, Dzemal Bijedic, University of Mostar, Mostar, Bosnia & Herzegovina

3 Department of Biochemistry, Azerbaijan Medical University, Baku, Azerbaijan

4 Department of Obstetrics and Gynecology, Faculty of Medicine, Necmettin Erbakan Unıversity Meram, Konya, Türkiye

10.22034/CAJMPSI.2022.05.02

Abstract

Reactive oxygen species (ROS) are necessary for regular functions of spermatozoa including acrosome reaction, capacitation, fertilization, etc. But its high amount can be harmful to the function of the sperm cell. Compared to other cells, the sperm cell is more susceptible to oxidative attacks because of the extreme concentration of unsaturated fatty acids in the plasmalemma and the minor level of the cytoplasm. A chief factor of sperm genome damage, which is involved in most kinds of infertility in men, is increased oxidative stress. Some micronutrients, such as vitamins C, E, D, B6, B9, B12, selenium, iron, zinc, and essential fatty acids could have a direct effect on fertility by reducing the ROS level and its detrimental influences on sperm parameters. In humans, the most active form of vitamin E is alpha-tocopherol and the strongest antioxidant, and its most important task is to fight lipid oxidation by free radicals. High concentration of ascorbic acid in seminal plasma probably points to its role in protection of spermatozoa from ROS attacks and preventing oxidative DNA damage. Quality of semen and specific sperm motility seem to be related to vitamin D. Vitamin A plays an important role in spermatogenesis due to its oxidative activity. Vitamins B are cofactors for the main metabolic enzymes of sperm and their deficiency can affect male fertility. The purpose of this study is to describe the role of vitamins in overcoming oxidative stress in male infertility.

Graphical Abstract

Vitamins and male infertility: role of various vitamins versus oxidative stress

Highlights

  • A high amount of reactive oxygen species can be harmful to function of sperm.
  • Compared to other cells, the sperm cell is more susceptible to oxidative attacks.
  • Various vitamins can affect male infertility induced by oxidative stress.

Keywords

Main Subjects


1. Agarwal A, Majzoub A, Parekh N, Henkel R. A schematic overview of the current status of male infertility practice. World J Men's Health 2020; 38(3): 308.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
2. Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, Evenson D, Thomas Jr AJ, Alvarez JG. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod 2001; 16(9): 1912-1921.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
3. Yanase T, Kawanami T, Tanaka T, Tanabe M, Nomiyama T. Impact of metabolic disorders on prostate cancer growth: androgen and insulin resistance perspectives. Reprod Med Biol 2017; 16(3): 252-257.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
4. Gharagozloo P, Gutiérrez-Adán A, Champroux A, Noblanc A, Kocer A, Calle A, Pérez-Cerezales S, Pericuesta E, Polhemus A, Moazamian A, Drevet JR. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models. Hum Reprod 2016; 31(2): 252-262.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Showell M, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz M, Hart R. Antioxidants for male subfertility. Cochrane Database Syst Rev 2014; 12.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed      
6. Lombardo F, Sansone A, Romanelli F, Paoli D, Gandini L, Lenzi A. The role of antioxidant therapy in the treatment of male infertility: an overview. Asian J Androl 2011; 13(5): 690.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
7. Fanaei H, Keshtgar S, Bahmanpour S, Ghannadi A, Kazeroni M. Beneficial effects of α-tocopherol against intracellular calcium overload in human sperm. Reprod Sci 2011; 18(10): 978-982.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
8. Maleki BH, Tartibian B, Vaamonde D. The effects of 16 weeks of intensive cycling training on seminal oxidants and antioxidants in male road cyclists. Clin J Sport Med 2014; 24(4): 302-307.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
9. Vaamonde D, Da Silva-Grigoletto ME, García-Manso JM, Vaamonde-Lemos R, Swanson RJ, Oehninger SC. Response of semen parameters to three training modalities. Fertil Steril 2009; 92(6): 1941-1946.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
11. Lewis SE, Boyle PM, McKinney KA, Young IS, Thompson W. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril 1995; 64(4): 868-870.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
12. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 2004; 8(6): 616-627.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
13. Sies H. Oxidative stress: impact in redox biology and medicine. Arch Med Biom Res 2015; 2(4): 146-150.
CrossRef    Google Scholar    full-text PDF    Mendeley       
14. Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance, and treatment. Urolog Clin 2002; 29(4): 817-827.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Bansal AK, Bilaspuri G. Impacts of oxidative stress and antioxidants on semen functions. Veterinary Med Int 2011; 2011: 1-8.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
16. Bucak MN, Ateşşahin A, Varışlı Ö, Yüce A, Tekin N, Akçay A. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: microscopic and oxidative stress parameters after freeze–thawing process. Theriogenology 2007; 67(5): 1060-1067.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. Wroblewski N, Schill WB, Henkel R. Metal chelators change the human sperm motility pattern. Fertil Steril 2003; 79: 1584-1589.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
18. Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, Zghal K, Fki H, Damak J, Bahloul A. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl 2003; 49(2): 83-94.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
20. Zini A, Al-Hathal N. Antioxidant therapy in male infertility: fact or fiction? Asian J Androl 2011; 13(3): 374.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
21. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am College Nutr 2003; 22(1): 18-35.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Eskenazi B, Kidd S, Marks A, Sloter E, Block G, Wyrobek A. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod 2005; 20(4): 1006-1012.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
23. Murugesan P, Muthusamy T, Balasubramanian K, Arunakaran J. Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)-induced oxidative damage in Leydig cells. Free Rad Res 2005; 39(11): 1259-1272.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
24. Almbro M, Dowling DK, Simmons LW. Effects of vitamin E and beta‐carotene on sperm competitiveness. Ecol Lett 2011; 14(9): 891-895.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
26. Lerchbaum E, Rabe T. Vitamin D and female fertility. Curr Opinion Obstet Gynecol 2014; 26(3): 145-150.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed      
27. Gurel A, Coskun O, Armutcu F, Kanter M, Ozen OA. Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus: biochemical and histological studies. J Chem Neuroanatomy 2005; 29(3): 173-178.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Chandra AK, Chatterjee A, Ghosh R, Sarkar M. Vitamin E-supplementation protect chromium (VI)-induced spermatogenic and steroidogenic disorders in testicular tissues of rats. Food Chem Toxicol 2010; 48(3): 972-979.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
31. Tremellen K. Oxidative stress and male infertility-a clinical perspective. Hum Reprod Update 2008; 14(3): 243-258.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
32. Buhling KJ, Grajecki D. The effect of micronutrient supplements on female fertility. Curr Opinion Obstet Gynecol 2013; 25(3): 173-180.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
33. Buhling KJ, Laakmann E. The effect of micronutrient supplements on male fertility. Curr Opinion Obstet Gynecol 2014; 26(3): 199-209.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
34. Azzi A, Stocker A. Vitamin E: non-antioxidant roles. Progress Lipid Res 2000; 39(3): 231-255.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
36. Li C, Miao X, Li F, Wang S, Liu Q, Wang Y, Sun J. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy. Oxidat Med Cell Longev 2017; 2017.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
39. Miller SL, Wallace EM, Walker DW. Antioxidant therapies: a potential role in perinatal medicine. Neuroendocrinology 2012; 96(1): 13-23.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
40. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Mole Mech Spermatogen 2009: 154-171.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
41. Luck MR, Jeyaseelan I, Scholes RA. Ascorbic acid and fertility. Biol Reprod 1995; 52(2): 262-266.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
42. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 1997; 68(3): 519-524.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
43. Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 1996; 145(5): 532-541.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
CrossRef    Google Scholar    full-text PDF    Mendeley      
45. Sauberlich HE. Pharmacology of vitamin C. Ann Rev Nutr 1994; 14(1): 371-391.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008; 59(1): 2-11.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
47. Grzechocinska B, Dabrowski FA, Cyganek A, Wielgos M. The role of vitamin D in impaired fertility treatment. Neuroendocrinol Lett 2013; 34(8): 756-762.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
48. Holick MF. The vitamin D deficiency pandemic: a forgotten hormone important for health. Public Health Rev 2010; 32(1): 267-283.
CrossRef    Google Scholar    full-text PDF    Mendeley       
49. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004; 80(6): 1689S-1696S.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
50. Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 2004; 89(11): 5387-5391.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
51. McCullough ML. Vitamin D deficiency in pregnancy: bringing the issues to light. J Nutr 2007; 137(2): 305-306.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
52. Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008; 122(5): 1142-1152.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
53. Cannell JJ, Hollis BW. Use of vitamin D in clinical practice. Altern Med Rev 2008; 13(1): 6-20.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
54. Blomberg Jensen M, Bjerrum PJ, Jessen TE, Nielsen JE, Joensen UN, Olesen IA, Petersen JH, Juul A, Dissing S, Jørgensen N. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa. Hum Reprod 2011; 26(6): 1307-1137.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
55. Moukhah S, Siahbazi S, Ahmadi F, Paknahad Z. Review Assessment of Relation Between 25-Hydroxy Vitamin D Supplementation on Women Fertility. Iran J Health Edu Health Promo 2017; 5(3): 147-154. [In Persian]
CrossRef    Google Scholar    full-text PDF    Mendeley       
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
57. Parikh G, Varadinova M, Suwandhi P, Araki T, Rosenwaks Z, Poretsky L, Seto-Young D. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Hormone Metab Res 2010; 42(10): 754-757.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
58. Paffoni A, Ferrari S, Viganò P, Pagliardini L, Papaleo E, Candiani M, Tirelli A, Fedele L, Somigliana E. Vitamin D deficiency and infertility: insights from in vitro fertilization cycles. J Clin Endocrinol Metab 2014; 99(11): E2372-E2376.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
59. Kwiecinski G, Petrie G, DeLuca H. Vitamin D is necessary for reproductive functions of the male rat. J Nutr 1989; 119(5): 741-744.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
60. Sun W, Chen L, Zhang W, Wang R, Goltzman D, Miao D. Active vitamin D deficiency mediated by extracellular calcium and phosphorus results in male infertility in young mice. Am J Physiol Endocrinol Metab 2015; 308(1): E51-E62.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
61. Jensen MB. Vitamin D and male reproduction. Nat Rev Endocrinol 2014; 10(3): 175-186.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
62. Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci 2004; 29(12): 664-673.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
63. Verstuyf A, Carmeliet G, Bouillon R, Mathieu C. Vitamin D: a pleiotropic hormone. Kidney Int 2010; 78(2): 140-145.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
64. Foresta C, Strapazzon G, De Toni L, Perilli L, Di Mambro A, Muciaccia B, Sartori L, Selice R. Bone mineral density and testicular failure: evidence for a role of vitamin D 25-hydroxylase in human testis. J Clin Endocrinol Metab 2011; 96(4): E646-E652.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
65. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, Srinivas P, Chamouni A, Lugani F, Lejeune H, Kumar TR. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013; 123(6): 2421-2433.
66. Ramlau-Hansen CH, Moeller UK, Bonde JP, Olsen J, Thulstrup AM. Are serum levels of vitamin D associated with semen quality? Results from a cross-sectional study in young healthy men. Fertil Steril 2011; 95(3): 1000-1004.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
68. Paradiso Galatioto G, Gravina GL, Angelozzi G, Sacchetti A, Innominato PF, Pace G, Ranieri G, Vicentini C. May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele? World J Urol 2008; 26(1): 97-102.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
69. Scott R, MacPherson A, Yates R, Hussain B, Dixon J. The effect of oral selenium supplementation on human sperm motility. Br J Urol 1998; 82(1): 76-80.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
70. Brown DG, Burk RF. Selenium retention in tissues and sperm of rats fed α torula yeast diet. J Nutr 1973; 103(1): 102-108.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
71. Paik J, Vogel S, Quadro L, Piantedosi R, Gottesman M, Lai K, Hamberger L, de Morais Vieira M, Blaner WS. Vitamin A: overlapping delivery pathways to tissues from the circulation. J Nutr 2004; 134(1): 276S-280S.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
73. Livera G, Rouiller-Fabre V, Pairault C, Levacher C, Habert R. Regulation and perturbation of testicular functions by vitamin A. Reprod Cambridge 2002; 124(2): 173-180.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
74. Griswold MD, Bishop PD, Kim K-H, Ping R, Siiteri JE, Morales C. Function of vitamin A in normal and synchronized seminiferous tubules. Ann New York Acad Sci 1989; 564: 154-172.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
75. Mitranond V, Sobhon P, Tosukhowong P, Chindaduangrat W. Cytological changes in the testes of vitamin-A-deficient rats. Cells Tissues Organs 1979; 103(2): 159-168.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
76. Huang H, Hembree W. Spermatogenic response to vitamin A in vitamin A deficient rats. Biol Reprod 1979; 21(4): 891-904.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
77. Sommer A. The continuing challenge of vitamin A deficiency. Ophthalmic Epidemiol 2009; 16(1): 1-1.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
78. Singh K, Jaiswal D. One-carbon metabolism, spermatogenesis, and male infertility. Reprod Sci 2013; 20(6): 622-630.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
79. Dattilo M, Cohen M, Menezo Y. The role of sperm chromatin structure in couple’s infertility and its sensitivity to dietary manipulation. Giornale Italiano Di Ostetricia E Ginecologia 2015; 37(1): 7-10.
80. Najafipour R, Moghbelinejad S, Aleyasin A, Jalilvand A. Effect of B9 and B12 vitamin intake on semen parameters and fertility of men with MTHFR polymorphisms. Andrology 2017; 5(4): 704-710.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
81. Schmid TE, Eskenazi B, Marchetti F, Young S, Weldon RH, Baumgartner A, Anderson D, Wyrobek AJ. Micronutrients intake is associated with improved sperm DNA quality in older men. Fertil Steril 2012; 98(5): 1130-1137.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
83. Murphy LE, Mills JL, Molloy AM, Qian C, Carter TC, Strevens H, Wide-Swensson D, Giwercman A, Levine RJ. Folate and vitamin B12 in idiopathic male infertility. Asian J Androl 2011; 13(6): 856.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
84. Azizollahi G, Azizollahi S, Babaei H, Kianinejad M, Baneshi MR, Nematollahi-mahani SN. Effects of supplement therapy on sperm parameters, protamine content and acrosomal integrity of varicocelectomized subjects. J Assist Reprod Genet 2013; 30(4): 593-599.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
85. Fujii J, Tsunoda S. Redox regulation of fertilisation and the spermatogenic process. Asian J Androl 2011; 13(3): 420.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
86. Dattilo M, Cornet D, Amar E, Cohen M, Menezo Y. The importance of the one carbon cycle nutritional support in human male fertility: a preliminary clinical report. Reprod Biol Endocrinol 2014; 12(1): 1-9.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
87. Ciftci H, Verit A, Savas M, Yeni E, Erel O. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status. Urology 2009; 74(1): 73-76.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed