Structure and function of mitochondria and its role in male infertility

Document Type : Review Paper

Authors

1 Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, Baku, Azerbaijan

2 Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan

3 Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan

10.22034/CAJMPSI.2022.06.02

Abstract

Infertility refers to the inability to conceive after at least 12 months of intercourse without prevention. About half of all infertility factors are due to male factors. Genetic factors are the important factors that contributed to the infertility of men. Genetic factors influencing male infertility can be intra-nuclear or extra-nuclear. A large number of nuclear genes such as protamine genes, aryl hydrocarbon receptors, etc. are involved in male infertility. Deletions and mutations in the genome of mitochondria are one of the most important extra-nuclear factors affecting male infertility. One of the chief features of spermatozoa is its motility, which is essential for the fertilization process. Due to the supply of energy to the sperm by the mitochondria, any defect in it can impair sperm motility and asthenospermia. Mitochondrial genome disorders such as point mutations and genomic deletions, especially the three deletions bp4977, bp7345, and bp7599 may be the main cause of asthenospermia. Identification of mitochondrial molecular defects can be helpful in diagnosing infertility factors, especially asthenospermia. This study aimed to describe the structure and function of mitochondria and its role in the pathophysiology of male infertility.

Graphical Abstract

Structure and function of mitochondria and its role in male infertility

Highlights

  • Mitochondria function as an organelle in various cellular processes.
  • ATP production for sperm motility is provided by mitochondria.
  • Mitochondrial mutations and deletions cause impaired sperm motility and infertility.

Keywords

Main Subjects


1. Babakhanzadeh E, Nazari M, Ghasemifar S, Khodadadian A. Some of the factors involved in male infertility: a prospective review. Int J Gen Med 2020; 13: 29.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
2. Fazeli-Nasab B, Sayyed RZ, Sobhanizadeh A. In Silico Molecular Docking Analysis of α-Pinene: An Antioxidant and Anticancer Drug Obtained from Myrtus communis. Int J Cancer Manage 2021; 14(2).
CrossRef    Google Scholar    full-text PDF    Mendeley       
3. Punab M, Poolamets O, Paju P, Vihljajev V, Pomm K, Ladva R, Korrovits P, Laan M. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum Reprod 2017; 32(1): 18-31.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
4. Kumar DP, Sangeetha N. Mitochondrial DNA mutations and male infertility. Ind J Hum Gen 2009; 15(3): 93.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
5. Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue SI, Yonekawa H, Hayashi JI. Mitochondria-related male infertility. Proc Nat Acad Sci 2006; 103(41): 15148-15153.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
7. Saneto RP, Sedensky MM. Mitochondrial disease in childhood: mtDNA encoded. Neurotherapeutics 2013; 10(2): 199-211.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
9. Behzadmehr R, Rezaie-Keikhaie K. Evaluation of active pulmonary tuberculosis among women with diabetes. Cell Mole Biomed Rep 2022; 2(1): 56-63.
CrossRef    Google Scholar    full-text PDF    Mendeley       
10. Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philosoph Trans Royal Soc Biol Sci 2015; 370(1678): 20140330.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
11. Saravani K, Afshari M, Aminisefat A, Bameri O. Blood Sugar Changes in Patients with Acute Drug Poisoning. Cell Mole Biomed Rep 2021; 1(2): 91-97.
CrossRef    Google Scholar    full-text PDF    Mendeley       
12. Klecker T, Westermann B. Pathways shaping the mitochondrial inner membrane. Open Biol 2021; 11(12): 210238.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
13. O’Rourke B. Mitochondrial ion channels. Mitochondria 2007: 221-238.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
14. Olson KR. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. J Compar Physiol B 2012; 182(7): 881-897.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed      
15. Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Ann Rev Pathol 2010; 5: 297.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
16. Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Nneurosci Res 2019; 97(8): 897-913.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
17. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018; 20(7): 745-754.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
18. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
19. Wang C, Youle RJ. The role of mitochondria in apoptosis. Ann Rev Gen 2009; 43: 95.
20. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Gen 2005; 6(5): 389-402.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
21. Shokolenko IN, Alexeyev MF. Mitochondrial DNA: A disposable genome?. Biochim Biophys Acta Mole Basis Dis 2015; 1852(9): 1805-1809.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
22. Garcia I, Jones E, Ramos M, Innis-Whitehouse W, Gilkerson R. The little big genome: The organization of mitochondrial DNA. Front Biosci 2017; 22: 710.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
23. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH. Sequence and organization of the human mitochondrial genome. Nature 1981; 290(5806): 457-465.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
24. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta Bioenerg 1999; 1410(2): 103-123.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
25. Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull 2013; 106(1): 135-159.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
26. D’Souza AR, Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem 2018; 62(3): 309-320.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
27. Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro L, Hsieh JT, Yan W. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 2013; 23(6): 759-774.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
31. Zeviani M, Di Donato S. Mitochondrial disorders. Brain 2004; 127(10): 2153-2172.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
32. Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295(52): 18406-18425.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
33. Uchida A, Murugesapillai D, Kastner M, Wang Y, Lodeiro MF, Prabhakar S, Oliver GV, Arnold JJ, Maher III LJ, Williams MC, Cameron CE. Unexpected sequences and structures of mtDNA required for efficient transcription from the first heavy-strand promoter. Elife 2017; 6: e27283.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
34. Barchiesi A, Vascotto C. Transcription, processing, and decay of mitochondrial RNA in health and disease. Int J Mole Sci 2019; 20(9): 2221.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
35. Rodley CD, Grand RS, Gehlen LR, Greyling G, Jones MB, O'Sullivan JM. Mitochondrial-nuclear DNA interactions contribute to the regulation of nuclear transcript levels as part of the inter-organelle communication system. PloS One 2012; 7(1): e30943.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
36. Holt IJ, Reyes A. Human mitochondrial DNA replication. Cold Spring Harbor Perspect Biol 2012; 4(12): a012971.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
37. Kanungo S, Morton J, Neelakantan M, Ching K, Saeedian J, Goldstein A. Mitochondrial disorders. Ann Trans Med 2018; 6(24): 475.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
40. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331(6158): 717-719.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
41. DiMauro S, Garone C. Historical perspective on mitochondrial medicine. Develop Disabil Res Rev 2010; 16(2): 106-113.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
42. Wanders RJ, Visser G, Ferdinandusse S, Vaz FM, Houtkooper RH. Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment. J Lipid Atheroscl 2020; 9(3): 313.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
43. Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep 2010; 10(2): 118-126.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
44. Park CB, Larsson NG. Mitochondrial DNA mutations in disease and aging. J Cell Biol 2011; 193(5): 809-818.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
45. Zapico SC, Ubelaker DH. mtDNA mutations and their role in aging, diseases and forensic sciences. Age Dis 2013; 4(6): 364.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
46. Cummins J. Mitochondrial DNA in mammalian reproduction. Rev Reprod 1998; 3(3): 172-182.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
47. Swerdlow RH. The neurodegenerative mitochondriopathies. J Alzheimer's Dis 2009; 17(4): 737-751.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
48. Azeez SH, Jafar SN, Aziziaram Z, Fang L, Mawlood AH, Ercisli MF. Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mole Biomed Rep 2021; 1(1): 42-51.
CrossRef    Google Scholar    full-text PDF    Mendeley       
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
50. Castellini C, D’Andrea S, Cordeschi G, Totaro M, Parisi A, Di Emidio G, Tatone C, Francavilla S, Barbonetti A. Pathophysiology of mitochondrial dysfunction in human spermatozoa: Focus on energetic metabolism, oxidative stress and apoptosis. Antioxidants 2021; 10(5): 695.
51. du Plessis SS, Agarwal A, Mohanty G, Van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?. Asian J Androl 2015; 17(2): 230.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
52. Varuzhanyan G, Chan DC. Mitochondrial dynamics during spermatogenesis. J Cell Sci 2020; 133(14): jcs235937.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
53. Madeja ZE, Podralska M, Nadel A, Pszczola M, Pawlak P, Rozwadowska N. Mitochondria content and activity are crucial parameters for bull sperm quality evaluation. Antioxidants 2021; 10(8): 1204.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
54. Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, Joumah A, Agarwal A. Microtubular Dysfunction and Male Infertility. World J Men's Health 2020; 38(1): 9.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
55. Inaba K, Mizuno K. Sperm dysfunction and ciliopathy. Reprod Med Biol 2016; 15(2): 77-94.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
56. Abd Elrahman MM, Hassanane MS, Alam SS, Hassan NH, Amer MK. Assessment of correlation between asthenozoospermia and mitochondrial DNA mutations in Egyptian infertile men. J Gen Eng Biotech 2021; 19(1): 1-5.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
58. Al Zoubi MS, Al-Talafha AM, Al Sharu E, Al-Trad B, Alzu’bi A, AbuAlarjah MI, Shehab Q, Alsmadi M, Al-Batayneh KM. Correlation of Sperm Mitochondrial DNA 7345 bp and 7599 bp Deletions with Asthenozoospermia in Jordanian Population. J Reprod Infert 2021; 22(3): 165.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed