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 REVIEW  PAPER 

• Mitochondria function as an 

organelle in various cellular 

processes. 

• ATP production for sperm 

motility is provided by 

mitochondria. 

• Mitochondrial mutations and 

deletions cause impaired sperm 

motility and infertility. 

Infertility refers to the inability to conceive after at least 12 months of intercourse 

without prevention. About half of all infertility factors are due to male factors. 

Genetic factors are the important factors that contributed to the infertility of men. 

Genetic factors influencing male infertility can be intra-nuclear or extra-nuclear. A 

large number of nuclear genes such as protamine genes, aryl hydrocarbon receptors, 

etc. are involved in male infertility. Deletions and mutations in the genome of 

mitochondria are one of the most important extra-nuclear factors affecting male 

infertility. One of the chief features of spermatozoa is its motility, which is essential 

for the fertilization process. Due to the supply of energy to the sperm by the 

mitochondria, any defect in it can impair sperm motility and asthenospermia. 

Mitochondrial genome disorders such as point mutations and genomic deletions, 

especially the three deletions bp4977, bp7345, and bp7599 may be the main cause 

of asthenospermia. Identification of mitochondrial molecular defects can be helpful 

in diagnosing infertility factors, especially asthenospermia. This study aimed to 

describe the structure and function of mitochondria and its role in the 

pathophysiology of male infertility. 

Receive Date: 17 October 2022   

Revise Date: 22 November 2022    

Accept Date: 03 December 2022 

Available online: 11 December 2022 

Keywords:                              

Mitochondria                     

mtDNA                                    

Male infertility                 

Oxidative phosphorylation 

10.22034/CAJMPSI.2022.06.02 E-ISSN: 2783-0993 

https://www.cajmpsi.com/article_163511.html
http://www.cajmpsi.com/
mailto:ro.khalilov@yahoo.com
https://www.cajmpsi.com/article_163511.html


Maharramova et al.,                                                                                                 Cent Asian J Med Pharm Sci Innov 2(6): 176-185 (2022)                                                                                                                                                                                                                                                                                                                                           

 

177 
 
 

Introduction 

Infertility in men is a major global problem. Immunological, anatomical, physical, or obstructive disorders, 

hormonal disorders, and environmental factors are significant causes of male infertility. In addition to these 

factors, there are other factors whose effects on normal sperm function and male fertility are not yet well 

known. These factors are called idiopathic or unknown factors, which account for about 25 to 30% of the causes 

of male infertility (1, 2). Approximately 60% of infertility cases are in idiopathic men, about 30% of which are 

caused by genetic factors, and it is not possible to identify genetic causes by testing for sperm parameters. In 

men, according to semen quality assessment, infertility is divided into three groups: oligospermia (sperm 

number< 15 million per milliliter), asthenospermia (progressive sperm motility< 32%), and teratospermia 

(sperm morphology< 4% normal). Approximately 30% of male infertility cases with chromosomal abnormalities 

or mutations in functional genes occur in germ cells (3). 

Sperm dysfunction is one of the most usual reasons for infertility in men, which has always been difficult to 

evaluate and treat. Sperm motility can be affected by a wide range of conditions, including flagellar movement 

disorders. Mitochondria as a source of cell energy supply can play an essential role in sperm motility, 

spermatogenesis, maturation of sperm, and so on. Significant amounts of energy are required for sperm to swim 

rapidly to reach the fallopian tube during fertilization. In general, there are about seventy to eighty 

mitochondria in the middle part of sperm in mammalian. Motility of sperm is extremely dependent on the 

produced ATP by oxidative phosphorylation in the sheath of mitochondrial (4). Mitochondrial DNA (mtDNA) 

is produced during meiosis and spermiogenesis and always remains active in the sperm mitochondria and is 

also exist in ejaculate sperm. The human mitochondrial genome encodes thirteen proteins that are vital subunits 

of electron transport chain complexes in the inner membrane of mitochondria. It also encodes 2 rRNAs and 22 

tRNAs, which are essential for the synthesis of these proteins (5).  

Because the mitochondrial bioenergetic activity is required for motility of sperm, any qualitative or 

quantitative changes in mtDNA might influence sperm function. Several point mutations and deletions have 

been reported in mtDNA correlated with infertility of men, and some studies have shown that these deletions 

can reduce sperm motility and subsequently reduce fertility. Among the mitochondrial deletions observed in 

the mitochondrial genome is the deletion of 4977 bp (4977-bp), which is the most common and numerous kind 

of deletion (6). It is characterized by a number of pathological phenotypes, and this deletion is often seen in old 

age. During this deletion, a large length of mitochondrial DNA is lost, leading to the fusion of the genes of 

ATPase 8 and ND5, resulting in impaired respiratory function of mitochondria and a decrease in ATP synthesis. 

Other large deletions in the genome, such as 7491-bp, 7599-bp, and 7345-bp, may also be associated with poor 

sperm motility (7). In addition to deletions, point mutations are also found in the mitochondrial genome. These 

point mutations include C11994T, T8821C, A3243G, and A73G. A3243G point mutation of mitochondrial leu 

tRNA gene is correlated with many diseases such as insulin-dependent diabetes, renal failure, cardiomyopathy, 

decreased sperm motility, etc. Sperm mitochondria have a main role in sperm function, so genetic changes in 

mtDNA have serious consequences for fertility and normal spermatogenesis (8, 9). Given all of the above-

mentioned contents and the importance of molecular pathology of male infertility, this study aimed to describe 

the role of mitochondria in male infertility.  

 

Structure and function of human mitochondria 

Mitochondria are semi-independent organs found in the cytoplasm of all eukaryotic cells except adult red 

blood cells and some protozoa. Mitochondria originated millions of years ago in eukaryotic cells through the 

symbiosis of free-living bacteria capable of metabolizing oxygen, so there are several common features between 

mitochondria and bacteria that support the theory of endosymbiotic. These include two-layer structures, shape 

and size, cyclic double-stranded DNA, specific transcription and translation systems, and similar binary fission 

power (10, 11). Structurally, the mitochondria have an outer and inner membrane. The outer membrane, about 6 

nm thick, surrounds the organ. Inside this membrane, there is an intermembrane space (about 6 to 8 nm). Then 



Cent Asian J Med Pharm Sci Innov 2(6): 176-185 (2022)                                                                                                 Maharramova et al.,                                                                                                                                                                                                                                                                                                                                                                                                                     

 

178 
    

there is the inner membrane, which has cristas into the inner mitochondrial cavity (12). Two mitochondrial 

membranes regulate the transport of molecules. Large molecules are transported through the outer membrane 

via nonspecific purine channels. The ratio of lipids to proteins in the outer membrane is approximately 50:50, so 

they are permeable to molecules with a molecular weight of more than 10,000 daltons. The inner membrane of 

the mitochondria is relatively impermeable, consisting of approximately 80% protein (13). 

Mitochondria are an energy-producing intracellular organ that is vital for aerobic metabolism in eukaryotic 

cells, especially those with high oxidative capacity, such as liver, heart, muscle, and nerve tissue cells. They are 

the site of most of the chemical reactions that convert chemical energy in food into adenosine triphosphate 

(ATP). The number of mitochondria per cell is dependent on the energy required and varies from tens to 

thousands of mitochondria per cell (14). Human cells for growth, differentiation, response to physiological 

stimuli, and challenging environmental conditions require ATP. ATP production is a key function of any 

mitochondria. The pervasive presence of ATP molecules supports cell homeostasis and also controls cellular 

survival and dynamics in cell division and cell mobility. Krebs cycle and beta-oxidation are two important 

pathways of cellular ATP production that precede oxidative phosphorylation, the main producer of ATP via the 

electron transport chain. During cellular respiration, the chemical energy of sugars and fatty acids is released 

and stored as ATP (15, 16). In addition to their bioenergetic role, mitochondria provide several basic metabolic 

pathways in the cell, including the breakdown of fatty acids, the modulation of intracellular calcium 

homeostasis, and the biosynthesis of metabolites, such as nucleotides, amino acids, folic acid, pyrimidines, and 

phospholipids and breakdown of metabolites such as uric acid (17). The essential role of mitochondria is also 

now well established in a range of physiological procedures including embryonic development, apoptosis, and 

the aging process (18, 19). 

 

Mitochondrial genetics and replication and transcription of its genome 

The presence of mitochondrial DNA was determined in 1963 using electron microscopy. A human cell 

included numerous copies of mitochondrial DNA, and each mitochondrion includes between 2-10 copies of 

DNA, but the total mitochondrial DNA in a cell contains only about one percent of the total DNA of a cell (20). 

Mitochondria have independent genomes that are organized separately from nuclear genome. The human 

mitochondrial genome (mtDNA) is very dense and circular and contains two strands. The two strands of the 

mitochondrial genome differ in buoyant density, the heavy (H-strand) purine-rich strand (A+G) while the light 

(L-strand) is symmetrically rich in pyrimidine (C+T). The naming of these two strands is based on their 

separation in the concentration gradient of cesium chloride. Transcription occurs simultaneously and in 

opposite directions, and many genes overlap (21, 22). In general, the genome of mitochondria encodes 37 genes, 

28 of which are located on the heavy DNA strand and 9 of which are on the light strand. Of these 37 genes, 2 

genes encode rRNA (16S and 12S, which are essential for expression of mRNA, 22 genes encode tRNA, and 13 

genes encode respiratory chain polypeptides (the ATP production pathway). Thus, the genome of mitochondria 

encodes only a small fraction of the peptids required for its specific function, and most mitochondrial 

polypeptides are encoded by the nucleus genome and are produced on ribosomes in cytoplasm before they 

enter the mitochondria. The complete sequence of 16569 pairs of the genome of human mitochondria was 

described in 1981 by Anderson et al., (23-27). 

Each electron transport chain (ETC) complex, except complex II, contains genes encoded by the genome of 

mitochondria. If the rest of the ETC subunits are encoded with the nuclear genome. Unlike DNA of nucleus, 

genes of mitochondria lack or have a small number of uncoded nucleotide sequences between their genes, in 

other words, they lack introns. 93% of it is coding and, in some regions, even overlapping genes can be seen. 

The nucleotide sequences encoding most genes are continuous and separated by only one or two bases (28). 

There are just 2 non-coding areas in the mitochondrial genome that are functionally important, one region is 

very variable and slightly unstable called D-Loop, which is about one Kbp long and covering the origin of 

heavy-strand (OH) and transcription promoters of light and heavy strands. This structure is created by a short 
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newly synthesized H strand that stays precisely in contact with the pattern molecule so that the ternary 

structure of DNA is formed at the origin site of the H strand during activity. Another chief non-coding sequence 

is a thirty-nucleotides area located at 2/3 mtDNA length from the origin of the heavy chain. This area 

surrounded by a cluster of 5 tRNAs genes, can create a firm hairpin structure and acts as the origin of the light 

strand (OL) (29-31).  

Although the topology and major events of mitochondrial replication and transcription are well established, 

little is known about mitochondrial genetic control. Transcription in mtDNA is two-directions and begins with 

cis-acting elements from the light and heavy chain promoter regions. Each strand of mtDNA is transcribed as a 

single polycistronic transcript under the control of special light or heavy strand promoter (PH, PL), 

transcription factors, and specific regulatory proteins, all encoded by the nucleus genome, which eventually 

form an adult RNA (32, 33). Although there is an interaction between the nucleus genome and mitochondria 

DNA. The replication of mtDNA happens independently of the cell cycle in the mitochondrial matrix. The 

synthesis of each mtDNA strand takes place at two different time intervals from two origins of replication. The 

two mtDNA strands have 2 separate origins for replication. The origin of the H strand replication is in the D-

Loop region, while the L strand replication origin is located in approximately 1/3 of the mitochondrial genome 

circumference. The synthesis of the heavy strand, called the leader strand, begins at the origin of the replication 

in the D-Loop region (24, 34-36). 

 

Disturbance and mutations in the genome of mitochondria 

Mitochondrial disorders involve a group of heterogeneous clinical phenotypes that lead to mutations in the 

genome of mitochondria and the genome of nucleus, or both. Electron transport chain abnormalities and the 

system of oxidative phosphorylation are probably the most common mitochondrial disorders. The function of 

respiratory chain is dependent on the coordinated expression of the nuclear and mitochondrial genomes. One 

mutation in each genome might result in mitochondrial respiratory chain dysfunction. The first reports of 

oxidative phosphorylation disorders were published in 1962 by Luft et al., and the first mutation in mtDNA 

was reported in 1988 by Holt et al., Mitochondrial disorders are generally caused by a variety of mutations or 

by the abnormal mitochondrial function (37-41). In addition, mitochondrial disorders not only indicate 

respiratory chain disorders but are also associated with pyruvate dehydrogenase deficiency, carnitine 

deficiency, deficiency of carnitine palmitoyltransferase, disorders of fatty acid beta-oxidation, and citric acid 

cycle disorders. Mitochondrial genome deletion has also been observed in some patients with congenital lethal 

myopathy, spinal muscular atrophy, and fatal hepatic impairment (42, 43). Mitochondrial disorders might 

happen at any time in life, from childhood to adulthood, these disorders may affect one or more tissues that 

require high energy and are highly dependent on oxidative metabolisms, such as peripheral and central 

neurons, heart, skeletal muscle, beta pancreas cells, endocrine organs, hepatocytes, and gastrointestinal tract are 

usually more affected. Mitochondrial disorders are generally caused by a variety of mutations or by abnormal 

mitochondrial function. The main and most important cause of mitochondrial disorders is mutations in genes in 

mitochondrial DNA. The frequency of mutations in mitochondria is about 10 to 100 times higher than in nuclear 

genes. The reason for this seems to be the high rate of replication, lack of nucleosome structure or histones, lack 

of efficient repair system, and unique inheritance model of mitochondria (37). 

Mitochondrial mutations have been observed in a variety of human disorders from aging to infertility. Many 

mtDNA mutations are harmful and fatal and rapidly they disappear by natural selection. These mutations can 

be the substituted bases, recombination, and rearrangement, and can occur in female germ cells or at the 

beginning of the embryonic developmental stage, leading to disease. Mutations can also occur throughout life 

and accumulate heterogeneously in tissues resulting from mitotic division. In addition to the above, another 

factor can have a role in causing mitochondrial mutations, which is the storage of 90% of cell oxygen in the 

mitochondria. In this case, the oxidative damage to mtDNA is significant. In the mitochondrial genome of 

patients with oxidative phosphorylation, till now, more than fifty point mutations and numerous complicated 
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rearrangements, including duplications and deletions were detected (44-46). Point mutations and very large-

scale deletions in mtDNA have been found in patients with mitochondrial myopathies and encephalopathies, 

diabetes mellitus, and multisystem diseases. In addition, abnormalities of mtDNA have been correlated with 

common disorders including Alzheimer's  and Parkinson's diseases, and the prevalence of these disorders in the 

elderly has increased significantly (44, 46, 47). 

 

Mitochondria and infertility in men 

Dysfunction of mitochondria is considered a possible factor in male infertility. Because sperm need a lot of 

energy to move rapidly after ejaculation, oxidative damage and mutations in the mtDNA molecules that encode 

a large portion of the respiratory chain polypeptide subunits have a main role in male infertility. The lack of the 

gamma DNA polymerase gene, which synthesizes mtDNA, is also associated with poor sperm quality. Many 

studies have revealed that mutations in multiple points and deletions in mtDNA are directly related to 

abnormal sperm structure and function, especially its low motility. Studies have also shown that there is a 

robust association between sperm quality and respiratory chain activity in sperm mitochondria so that if 

extracellular ATP is added to sperm, there is a significant increase in sperm fertility potential, which indicates 

the importance of mitochondrial activity in male fertility. Studies have shown that there is an association 

between mtDNA haplotype and respiratory chain function in mitochondria and sperm motility (48, 49). 

Adult mammalian sperm contain about 22-75 mitochondria that form a strong helix around the base of the 

flagellum in the middle part of the sperm and provide the ATP needed to move the flagellum and sperm 

motility. Human sperm naturally use glycolysis-derived ATP for survival, but the mitochondrial respiratory 

chain has main role in preparing the sperm ATP required for motility after ejaculation or certain physiological 

conditions. The position and structure of mitochondria in the middle area of adult spermatozoa is a chief factor 

in sperm motility. The position of mitochondria in the upper part of the sperm flagella is unique (50, 51). During 

spermatogenesis, mitochondria undergo severe morphological changes and subcellular reorganization. The 

organization, number, and location of mitochondria in germ cells change in the procedure of the production of 

adult sperm (maturation of spermatogonia to fertilizable spermatozoa). On average, about 1000-1500 copies of 

mtDNA are reported in the sperm cells of fertile men, while a 7-fold increase per mm3 of cells occurs during 

spermatozoa maturation, indicating a higher ATP requirement and the importance of mtDNA for sperm 

function. In order to maintain an adequate number of mitochondria in adult spermatozoa, replication and 

organization of mtDNA and should be strictly regulated in the spermatogenesis procedure. Because the 

mitochondrial bioenergetic function is critical for spermatozoa mobility, any qualitative or quantitative 

abnormalities in mtDNA might adversely influence spermatozoa cell function (52, 53). The location of 

mitochondria and the mtDNA structure is illustrated in Figure 1. 

 

 
Figure 1. Mitochondria in spermatozoa.  
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Mitochondria are positioned in the midpiece of spermatozoa and produce essential energy for sperm. 

Mitochondria contain several circular genomes that encode some essential mitochondrial protein. 

 

Mitochondrial genome mutations and sperm motility 

Decreased sperm motility is most likely caused by a disorder in each of the 200-300 individual genes that are 

essential for the suitable accumulation and the axon and tail function of the spermatozoa. Defects in 

spermatozoon tail formation can be due to the absence of one of the inner or outer arms of the dynein, the 

absence of radial spokes, or the removal of peripheral or central double microtubules (a group of partial and 

complete microtubules in the structure of a cylindrical wall). Studies have shown that there is a close relation 

between mitochondrial volume and spermatozoa length and flagellar movement. Studies have shown that 

asthenospermic men have shorter midpieces of sperm and fewer mitochondria than controls. About 72 to 80 

mitochondria in the middle part of the sperm are energy producers and have been described as the 

spermatozoa fuel machine. Deficiency in the inside structure and organization of mitochondria in the middle 

part of the sperm were observed in some patients with asthenozoospermia with low sperm mobility (54, 55). 

Asthenospermia in men can be caused, in particular, by deficiency in the formation of tail in sperm or by 

deficiencies in the energy-producing machine is essential for effective motility. Mutations in mtDNA could 

result in this abnormality (Figure 2). The researchers observed that these mutations were strongly corelated 

with low sperm motility. The mtDNA analysis in asthenospermic men also showed a high and significant 

frequency of nucleotide alterations in ND and ATPase genes vs. the control group. On the other, deletion of 

dinucleotides in COII genes was seen in sperm with low motility. Numerous studies in recent years have shown 

that large mtDNA deletions are associated with sperm dysfunction and infertility in men (4, 56, 57). Among 

mtDNA deletions, the usual deletion of 4977-bp is common. In addition to it, the 7345 and 7599-kb deletions 

were identified in mtDNA of low-motility spermatozoa. Since spermatozoa require adequate numbers of 

functional mitochondria to store energy for motility and fertilization capacity, reducing the number of mtDNA 

copies can be related to reduced motility and fertility of human sperm. Because there is an interaction between 

the genome of nucleus and the genome of mitochondria, mtDNA fragmentation, and mitochondrial swelling 

have also been suggested as an important parameter in low sperm motility. In its function, one of the reasons 

for sperm immobility may be due to the inability to produce ATP for the flagellum (58, 59). 

 

 
Figure 2. mtDNA mutations and male infertility. Some point mutations and mtDNA deletions could lead to in 

asthenospermia and subsequently male infertility. 
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Conclusion 

In recent years, male infertility in industrialized countries has increased due to reduced sperm number, 

decreased motility of sperm, impaired morphology of sperm, and increased testicular and sperm damage. 

Sperm dysfunction is one of the chief contributors to male infertility. Sperm motility disorder is one of the major 

indicators of infertility in men so infertility due to inactivity or poor quality of spermatozoa motility is the key 

problem of patients referred to medical centers. There are several factors that can affect sperm motility that in 

many cases are not yet well known. One of the most important factors in dysfunction and reduced sperm 

motility, which has attracted the attention of many researchers today, is a condition called oxidative stress, this 

adverse condition is caused by an increase in reactive oxygen metabolites. Defects in sperm mitochondria can 

be the source of such disorders. Defects in the genome of mitochondria could influence the function of 

mitochondria. These mitochondrial defects include point mutations and large dilations. In general, recognizing 

mitochondrial molecular defects could be helpful in diagnosing the causes of male infertility, especially in 

asthenospermia.  
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