Anti-inflammatory influences of royal jelly and melittin and their effectiveness on wound healing

Document Type : Review Paper

Authors

1 Department of Chemistry, Lovely Professional University, Punjab, India

2 Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, Nigde, Turkiye

10.22034/CAJMPSI.2023.02.02

Abstract

Royal jelly is a valuable medicinal substance that has different biological functions in various tissues and cells and has many medicinal features including anti-allergic, anti-tumor, antioxidant, and anti-inflammatory activities and also has protective effects on the immune, reproductive, nervous, and vascular systems. Melittin, which is a peptide with 26 residues, is the key element of honey bee venom and has cytotoxic, antibacterial, anticancer, and anti-inflammatory effects. Royal jelly can ameliorate the inflammatory response in microglia through the inhibition of p38 phosphorylation, and by inhibiting the NF-KB nuclear translocation. By decreasing the secretion of pro-inflammatory molecules including TNF-α, IL-1ß, and NO, melittin could apply the anti-inflammatory impacts on several kinds of cells including microglial cells. Royal jelly components may enhance the healing of wound via an anti-inflammatory effect, promotion of the growth factors synthesis, or the fibroblasts or skin keratinocytes migration. Based on multiple biological and pharmacological activities, a kind of formulated melittin is possibly capable to promote the healing of wound. The aim of this review is to narrate the anti-inflammatory effects of royal jelly and melittin and their efficiency on wound healing.

Graphical Abstract

Anti-inflammatory influences of royal jelly and melittin and their effectiveness on wound healing

Highlights

  • Royal jelly has antioxidant, anti-inflammatory, anti-tumor, and anti-allergy functions.
  • Melittin as the main component of bee venom has cytotoxic, antibacterial, anticancer, and anti-inflammatory effects.
  • Royal jelly and melittin can play a role in wound healing with different mechanisms.

Keywords

Main Subjects


1. Papa G, Maier R, Durazzo A, Lucarini M, Karabagias IK, Plutino M, Bianchetto E, Aromolo R, Pignatti G, Ambrogio A, Pellecchia M. The honey bee Apis mellifera: An insect at the interface between human and ecosystem health. Biology 2022; 11(2): 233.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
2. Ahmad S, Campos MG, Fratini F, Altaye SZ, Li J. New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. Int J Mole Sci 2020; 21(2): 382.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
3. Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid Med Cell Long 2017; 2017: 1259510.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
4. Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, Prieto MA. Health Promoting Properties of Bee Royal Jelly: Food of the Queens. Nutrients 2021; 13(2): 543.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
5. Kunugi H, Mohammed Ali A. Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans. Int J Mole Sci 2019; 20(19): 4662.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
6. Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 2017; 402: 16-31.
7. Ceremuga M, Stela M, Janik E, Gorniak L, Synowiec E, Sliwinski T, Sitarek P, Saluk-Bijak J, Bijak M. Melittin—a natural peptide from bee venom which induces apoptosis in human leukaemia cells. Biomolecules 2020; 10(2): 247.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
8. Gu H, Song IB, Han HJ, Lee NY, Cha JY, Son YK, Kwon J. Anti-inflammatory and immune-enhancing effects of enzyme-treated royal jelly. Appl Biol Chem 2018; 61(2): 227-233.
CrossRef    Google Scholar    full-text PDF    Mendeley       
9. Thalhamer T, McGrath M, Harnett M. MAPKs and their relevance to arthritis and inflammation. Rheumatology 2008; 47(4): 409-414.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
10. Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, Lee JD, Choi YH, Kim GY. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharm 2007; 7(8): 1092-1101.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
11. Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest 2001; 107(1): 7-11.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
12. Park HJ, Lee HJ, Choi MS, Son DJ, Song HS, Song MJ, Lee JM, Han SB, Kim Y, Hong JT. JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin. J Inflam 2008; 5(1): 1-3.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
13. Park JH, Kim KH, Lee WR, Han S-M, Park KK. Protective effect of melittin on inflammation and apoptosis in acute liver failure. Apoptosis 2012; 17(1): 61-69.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
14. Park HM, Hwang E, Lee KG, Han S-M, Cho Y, Kim SY. Royal jelly protects against ultraviolet B–induced photoaging in human skin fibroblasts via enhancing collagen production. J Med Food 2011; 14(9): 899-906.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
15. Alhakamy NA, Caruso G, Eid BG, Fahmy UA, Ahmed OA, Abdel-Naim AB, Alamoudi AJ, Alghamdi SA, Al Sadoun H, Eldakhakhny BM, Caraci F. Ceftriaxone and melittin synergistically promote wound healing in diabetic rats. Pharmaceutics 2021; 13(10): 1622.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
16. Moritz R, Simon U, Crewe R. Pheromonal contest between honeybee workers (Apis mellifera capensis). Naturwissenschaften 2000; 87(9): 395-397.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. Pavel CI, Mărghitaş LA, Bobiş O, Dezmirean DS, Şapcaliu A, Radoi I, Mădaş MN. Biological activities of royal jelly-review. Sci Papers Anim Sci Biotech 2011; 44(2): 108-118.
CrossRef    Google Scholar    full-text PDF    Mendeley       
18. Scarselli R, Donadio E, Giuffrida MG, Fortunato D, Conti A, Balestreri E, Felicioli R, Pinzauti M, Sabatini AG, Felicioli A. Towards royal jelly proteome. Proteomics 2005; 5(3): 769-776.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
20. Shi JL, Liao CH, Wang ZL, Wu XB. Effect of royal jelly on longevity and memory-related traits of Apis mellifera workers. J Asia-Pacific Entomol 2018; 21(4): 1430-1433.
CrossRef    Google Scholar    full-text PDF    Mendeley       
21. Li Xa, Huang C, Xue Y. Contribution of lipids in honeybee (Apis mellifera) royal jelly to health. J Med Food 2013; 16(2): 96-102.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Kurek-Górecka A, Górecki M, Rzepecka-Stojko A, Balwierz R, Stojko J. Bee products in dermatology and skin care. Molecules 2020; 25(3): 556.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
23. Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K. Bee pollen: chemical composition and therapeutic application. Evidence Based Complement Alterna Med 2015; 2015: 1-6.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
24. Han SM, Lee GG, Park KK. Skin sensitization study of bee venom (Apis mellifera) in guinea pigs. Toxicol Res 2012; 28(1): 1-4.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
26. Owen MD, Pfaff LA. Melittin synthesis in the venom system of the honey bee (Apis mellifera). Toxicon 1995; 33(9): 1181-1188.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Hristova K, Dempsey CE, White SH. Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 2001; 80(2): 801-811.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Bellik Y. Bee venom: its potential use in alternative medicine. Anti-Infect Agents 2015; 13(1): 3-16.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
31. Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, Baek H, Kim S, Park K. Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-α production stimulated by LPS. J Ethnopharm 2007; 111(1): 176-181.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
32. Lee JY, Kang SS, Kim J-H, Bae CS, Choi SH. Inhibitory effect of whole bee venom in adjuvant-induced arthritis. In Vivo 2005; 19(4): 801-805.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
33. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105(9): 1135-1143.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
35. Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediators of inflammation. 2009; 2009.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
36. Chen YF, Wang K, Zhang YZ, Zheng YF, Hu FL. In vitro anti-inflammatory effects of three fatty acids from royal jelly. Mediat Inflam 2016;2016.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
37. Park JH, Kum YS, Lee TI, Kim SJ, Lee WR, Kim BI, Kim HS, Kim KH, Park KK. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis. Exp Biol Med 2011; 236(11): 1306-1313.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
38. Park HJ, Son DJ, Lee CW, Choi MS, Lee US, Song HS, Lee JM, Hong JT. Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IκB kinase. Biochem Pharmacol 2007; 73(2): 237-247.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
39. Warner TD, Mitchell JA. Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J 2004; 18(7): 790-804.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
40. Bertolini A, Ottani A, Sandrini M. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr Med Chem 2002; 9(10): 1033-1043.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
42. Abramson SB, Amin AR, Clancy RM, Attur M. The role of nitric oxide in tissue destruction. Best Pract Res Clin Rheumatol 2001; 15(5): 831-845.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
43. Baeuerle PA, Baltimore D. NF-κB: ten years after. Cell 1996; 87(1): 13-20.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
45. Yager DR, Nwomeh BC. The proteolytic environment of chronic wounds. Wound Rep Regen 1999; 7(6): 433-441.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Witte MB, Barbul A. Role of nitric oxide in wound repair. Am J Surg 2002; 183(4): 406-412.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
47. George Broughton I, Janis JE, Attinger CE. The basic science of wound healing. Plastic Reconstr Surg 2006; 117(7S): 12S-34S.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
49. Jeckson TA, Neo YP, Sisinthy SP, Gorain B. Delivery of therapeutics from layer-by-layer electrospun nanofiber matrix for wound healing: An update. J Pharm Sci 2021; 110(2): 635-653.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
50. Eid BG, Alhakamy NA, Fahmy UA, Ahmed OA, Md S, Abdel-Naim AB, Caruso G, Caraci F. Melittin and diclofenac synergistically promote wound healing in a pathway involving TGF-β1. Pharmacol Res 2022; 175: 105993.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed       
51. Ferreira H, Silva R, Matamá T, Silva C, Gomes AC, Cavaco-Paulo A. A biologically active delivery material with dried-rehydrated vesicles containing the anti-inflammatory diclofenac for potential wound healing. J Liposome Res 2016; 26(4): 269-275.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
52. Lin Y, Shao Q, Zhang M, Lu C, Fleming J, Su S. Royal jelly-derived proteins enhance proliferation and migration of human epidermal keratinocytes in an in vitro scratch wound model. BMC Complement Alter Med 2019; 19(1): 1-16.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
54. Bucekova M, Sojka M, Valachova I, Martinotti S, Ranzato E, Szep Z, Majtan V, Klaudiny J, Majtan J. Bee-derived antibacterial peptide, defensin-1, promotes wound reepithelialisation in vitro and in vivo. Wound Heal South Afr 2017; 10(2): 25-35.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
55. Kim J, Kim Y, Yun H, Park H, Kim SY, Lee KG, Han SM, Cho Y. Royal jelly enhances migration of human dermal fibroblasts and alters the levels of cholesterol and sphinganine in an in vitro wound healing model. Nutr Res Pract 2010;4(5):362-368.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central   
56. Majtan J, Kumar P, Majtan T, Walls AF, Klaudiny J. Effect of honey and its major royal jelly protein 1 on cytokine and MMP‐9 mRNA transcripts in human keratinocytes. Exp Dermatol 2010; 19(8): e73-e79.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed