Non-coding RNAs and their role in Alzheimer's pathogenesis

Document Type : Narrative Review


1 Department of Orthopedic Surgeon, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Information and Communication Technology, Group of Bio-photomatix, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh

3 Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada


Alzheimer's disease is a progressive and irreversible brain disorder. This disease is the most common reason for dementia in aged people. Pathological symptoms of this disease are the formation of beta-amyloid plaques and neurofibrillary tangles. Beta-amyloid plaques appear intercellularly, while neurofibrillary tangles appear intracellularly. Defects in genes such as PSEN, APP, BACE1, etc., can cause Alzheimer's. However, some mechanisms that alter gene expression can have the main role in disease pathogenesis. One of the post-transcriptional mechanisms that can alter gene expression is the involvement of non-coding RNAs. Many kinds of non-coding RNAs exist, two of which are microRNAs and long non-coding RNAs. These can alter the expression of many genes by influencing the stability or structure of mRNAs. Non-coding RNAs can alter the risk of Alzheimer's disease if they affect genes involved in Alzheimer's pathogenesis. The mechanisms of influence of non-coding RNAs on the onset and development of Alzheimer's are not clear. This study aimed to describe the mechanisms of involvement of non-coding RNAs in the pathogenesis of Alzheimer's disease.

Graphical Abstract

Non-coding RNAs and their role in Alzheimer's pathogenesis


  • Alzheimer's disease is a progressive and irreversible brain impairment in the elderly.
  • Beta-amyloid plaques and neurofibrillary tangles are the main pathological symptoms of Alzheimer's.
  • Non-coding RNAs could involve in the pathogenesis of Alzheimer's disease.


Main Subjects

1. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect Med 2011; 1(1): a006189.
2. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010; 68(2): 270-281.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
3. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007; 13(4): 432-438.
4. Wen L, Zhang Y, Yang B, Han F, Ebadi AG, Toughani M. Knockdown of Angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol 2020; 66(5): 117-124.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed          
5. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci 2008; 28(33): 8354-8360.
6. Sun Q, Xie N, Tang B, Li R, Shen Y. Alzheimer’s disease: from genetic variants to the distinct pathological mechanisms. Front Mole Neurosci 2017; 10: 319.
7. Zaratiegui M, Irvine DV, Martienssen RA. Noncoding RNAs and gene silencing. Cell 2007; 128(4): 763-776.
8. Yang M, Abdalrahman H, Sonia U, Mohammed AI, Vestine U, Wang M, Ebadi AG, Toughani M. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol 2020; 66(2): 23-30.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
9. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrin 2018; 9: 402.
10. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem 2011; 67(1): 129-139.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
11. Fiore R, Khudayberdiev S, Saba R, Schratt G. MicroRNA function in the nervous system. Prog Mole Biol Trans Sci 2011; 102: 47-100.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
12. Maoz R, Garfinkel BP, Soreq H. Alzheimer’s disease and ncRNAs. Neuroepigenom Age Dis 2017: 337-361.
13. Yang M, Shi D, Wang Y, Ebadi AG, Toughani M. Study on Interaction of Coomassie Brilliant Blue G-250 with Bovine Serum Albumin by Multispectroscopic. Int J Peptide Res Therap 2021; 27(1): 421-431.
14. Zusso M, Barbierato M, Facci L, Skaper SD, Giusti P. Neuroepigenetics and Alzheimer’s disease: an update. J Alzheimer's Dis 2018; 64(3): 671-688.
15. Stoccoro A, Coppedè F. Role of epigenetics in Alzheimer's disease pathogenesis. Neurodegener Dis Manag 2018; 8(3): 181-193.
17. Finotti A, Fabbri E, Lampronti I, Gasparello J, Borgatti M, Gambari R. MicroRNAs and long non-coding RNAs in genetic diseases. Mole Diag Ther 2019; 23(2): 155-171.
18. Quévillon Huberdeau M, Simard MJ. A guide to micro RNA‐mediated gene silencing. FEBS J 2019; 286(4): 642-652.
19. Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mole Cancer 2020; 19(1): 1-26.
20. Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB. Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 2010; 16: 1516-1529.
21. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN. Human embryonic stem cells express a unique set of microRNAs. Develop Biol 2004; 270(2): 488-498.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R. Targeted deletion reveals essential and overlapping functions of the miR-17∼ 92 family of miRNA clusters. Cell 2008; 132(5): 875-886.
23. He Y, Li HB, Li X, Zhou Y, Xia XB, Song WT. MiR-124 Promotes the Growth of Retinal Ganglion Cells Derived from Müller Cells. Cell Physiol Biochem 2018; 45: 973-983.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
24. Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27: 435-448.
25. Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016; 10: 101-120.
26. Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 2012; 15: 697-699.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Shenoy A, Danial M, Blelloch RH. Let-7 and miR-125 cooperate to prime progenitors for astrogliogenesis. EMBO J 2015; 34: 1180-1194.
29. Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 2008; 28: 11720-11730.
30. Douglas-Escobar M, Weiss MD. Biomarkers of brain injury in the premature infant. Front Neurol 2012; 3: 185.
31. Lam JK, Chow MY, Zhang Y, Leung SW. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids 2015; 4: e252.
32. Weick EM, Miska EA. piRNAs: from biogenesis to function. Development 2014; 141: 3458-3471.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
33. Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 2006; 20: 1709-1714.
34. Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505: 353-359.
35. Czech B, Hannon GJ. One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends Biochem Sci 2016; 41: 324-337.
36. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154: 26-46.
37. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20: 300-307.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
38. Lipovich L, Tarca AL, Cai J, Jia H, Chugani HT, Sterner KN, Grossman LI, Uddin M, Hof PR, Sherwood CC, Kuzawa CW. Developmental changes in the transcriptome of human cerebral cortex tissue: long noncoding RNA transcripts. Cerebral Cortex 2014; 24(6): 1451-1459.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
39. Kadakkuzha BM, Liu XA, McCrate J, Shankar G, Rizzo V, Afinogenova A, Young B, Fallahi M, Carvalloza AC, Raveendra B, Puthanveettil SV. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci 2015; 9: 63.
40. Molyneaux BJ, Goff LA, Brettler AC, Chen HH, Brown JR, Hrvatin S, Rinn JL, Arlotta P. DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 2015; 85(2): 275-288.
41. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136: 629-41.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
42. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell 2011; 145: 178-181.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
44. Li L, Zhuang Y, Zhao X, Li X. Long Non-coding RNA in Neuronal Development and Neurological Disorders. Front Genet 2018; 9: 744.
45. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer's Dis 2008; 14(1): 27-41.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Tan L, Yu JT, Hu N, Tan L. Non-coding RNAs in Alzheimer's disease. Mol Neurobiol 2013; 47: 382-393.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
49. Zhu Y, Yang Y, Qu X, Yang P, Jiang L, He M. Pet/MRI in Alzheimer's disease: advances in the integrated PET/MRI system. Acta Med Mediter 2022; 38(1): 495-502.
50. Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc Nat Acad Sci 2008; 105(17): 6415-6420.
51. Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh JI. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR‐29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010; 36(4): 320-330.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
52. Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B. MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis 2009; 33(3): 422-428.
53. Wu XR, Gou L, Wang RJ, Sun FQ, Wang W, Huang W. Genetic polymorphism and genotype analysis of apoe4 and cr4 in patients with alzheimer's disease. Acta Med Mediter 2021; 37(5): 2301-2305.
54. Schipper HM, Maes OC, Chertkow HM, Wang E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 2007; 1: 263-274.
55. Villa C, Fenoglio C, De Riz M, Clerici F, Marcone A, Benussi L, Ghidoni R, Gallone S, Cortini F, Serpente M, Cantoni C. Role of hnRNP-A1 and miR-590-3p in neuronal death: genetics and expression analysis in patients with Alzheimer disease and frontotemporal lobar degeneration. Rejuven Res 2011; 14(3): 275-281.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
56. Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, Hübel K. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 2009; 11(6): 705-716.
57. Zovoilis A, Agbemenyah HY, Agis‐Balboa RC, Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, Falkai P, Bahari‐Javan S. microRNA‐34c is a novel target to treat dementias. EMBO J 2011; 30(20): 4299-4308.
58. Su W, Wang Z, Zhu Y, Zhang Y, Zhu L, Li L, Xia M, Li L. Genetic polymorphism of serum exosome-associated micrornas in patients with Alzheimers disease. Acta Med Mediter 2021; 37(4): 2365-2370.
59. Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009; 284: 1971-1981.
61. Li D, Zhang J, Li X, Chen Y, Yu F, Liu Q. Insights into lncRNAs in Alzheimer's disease mechanisms. RNA Biol 2021; 18: 1037-1047.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
62. Lee DY, Moon J, Lee ST, Jung KH, Park DK, Yoo JS, Sunwoo JS, Byun JI, Shin JW, Jeon D, Jung KY. Distinct expression of long non-coding RNAs in an Alzheimer's disease model. J Alzheimer's Dis 2015; 45(3): 837-849.
CrossRef    Google Scholar    full-text PDF    Mendeley        
64. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent III G, Kenny PJ, Wahlestedt C. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nat Med 2008; 14(7): 723-730.
65. Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 1993; 90: 2092-2096.
66. Yan C, Miao M, Liu B, Qiu W, Chen M, Zhao L, Zou W. The value of Alzheimer's disease-associated neurofilament protein combined with ab1-42/p-tau-181 ratio for the diagnosis of Alzheimer's. Acta Med Mediter 2021; 37(3): 1653-1657.
67. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6: e1001233.
68. Zhou X, Xu J. Identification of Alzheimer's disease-associated long noncoding RNAs. Neurobiol Aging 2015; 36: 2925-2931.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
69. Hannaoui S, Shim SY, Cheng YC, Corda E, Gilch S. Cholesterol balance in prion diseases and Alzheimer's disease. Viruses 2014; 6: 4505-4535.
70. Mosconi L, Berti V, Swerdlow RH, Pupi A, Duara R, de Leon M. Maternal transmission of Alzheimer's disease: prodromal metabolic phenotype and the search for genes. Hum Genom 2010; 4: 170-193.